Loading…

Soft Matter Characterization From Ultrasonic Microrheology and Fractional Calculus

Understanding soft matter mechanical behavior is of great interest as multiphasic combinations of their composition induce new properties which can be exploited for innovative applications. However, the final features optimization requires a tight multiscale control of the structure, even during the...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2022-01, Vol.22 (1), p.162-173
Main Authors: Gauthier, Vincent, Caplain, Emmanuel, Serfaty, Stephane, Michiel, Magalie, Griesmar, Pascal, Wilkie-Chancellier, Nicolas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c327t-354b74b6347ab72abfd35ad87e3bf54e9aff3a239814eace3e9dbec2f9b1d6c03
cites cdi_FETCH-LOGICAL-c327t-354b74b6347ab72abfd35ad87e3bf54e9aff3a239814eace3e9dbec2f9b1d6c03
container_end_page 173
container_issue 1
container_start_page 162
container_title IEEE sensors journal
container_volume 22
creator Gauthier, Vincent
Caplain, Emmanuel
Serfaty, Stephane
Michiel, Magalie
Griesmar, Pascal
Wilkie-Chancellier, Nicolas
description Understanding soft matter mechanical behavior is of great interest as multiphasic combinations of their composition induce new properties which can be exploited for innovative applications. However, the final features optimization requires a tight multiscale control of the structure, even during the elaboration early stages. This paper presents a multifrequency technique to investigate this evolution at mesoscopic scale and its bonds with other scales. A TMS resonator is used as a discrete spectral ultrasonic microrheometer from 5MHz to 50MHz. Then, soft matter can be described as an elastic structure, due to macromolecular interactions, immersed in an effective viscous fluid. An original model of the measured mechanical impedance is proposed and enables the simultaneous monitoring of the effective viscosity and the internal structure. It is based on fractional calculus. In addition to complex shear modulus, the evolution of a fractional parameter, ranging from zero for solids to one for Newtonian fluids, can be studied. The model and the experimental set-up are validated with various complex materials: Newtonian glycerol mixtures, cosmetic emulsions, and silica gels. Effective viscosity accuracy is demonstrated (less than 5% of error for Newtonian fluids). Structural values of complex fluids range from 0.6 (gels) to 1 (liquids). The extracted structural parameter can be linked to the fractal dimension. Hence, this technique is relevant to describe soft matter structure. Moreover, the structural parameter on-line monitoring can be useful to optimize the elaboration process of new products. Indeed, a microscopic characteristic time can be extracted and correlated to the macroscopic gelation time.
doi_str_mv 10.1109/JSEN.2021.3130037
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9625662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9625662</ieee_id><sourcerecordid>2615166454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-354b74b6347ab72abfd35ad87e3bf54e9aff3a239814eace3e9dbec2f9b1d6c03</originalsourceid><addsrcrecordid>eNo9kE9Lw0AQxYMoWKsfQLwEPHlI3d3ZP82xlNYqrYK14G2ZJBubknbrbiLUT--GSk_zGH7vMfOi6JaSAaUkfXxZTl4HjDA6AAqEgDqLelSIYUIVH553GkjCQX1eRlfebwihqRKqF70vbdnEC2wa4-LxGh3mQVW_2FR2F0-d3carunHo7a7K40WVO-vWxtb26xDjrghEMAQU63iMdd7Wrb-OLkqsvbn5n_1oNZ18jGfJ_O3peTyaJzkw1SQgeKZ4JoErzBTDrCxAYDFUBrJScJNiWQIySIeUG8wNmLTITM7KNKOFzAn0o4dj7hprvXfVFt1BW6z0bDTX3Y5ACJcgf2hg74_s3tnv1vhGb2zrwtVeM0kFlZILHih6pMKX3jtTnmIp0V3NuqtZdzXr_5qD5-7oqYwxJz6VTEjJ4A-JkHmt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615166454</pqid></control><display><type>article</type><title>Soft Matter Characterization From Ultrasonic Microrheology and Fractional Calculus</title><source>IEEE Xplore (Online service)</source><creator>Gauthier, Vincent ; Caplain, Emmanuel ; Serfaty, Stephane ; Michiel, Magalie ; Griesmar, Pascal ; Wilkie-Chancellier, Nicolas</creator><creatorcontrib>Gauthier, Vincent ; Caplain, Emmanuel ; Serfaty, Stephane ; Michiel, Magalie ; Griesmar, Pascal ; Wilkie-Chancellier, Nicolas</creatorcontrib><description>Understanding soft matter mechanical behavior is of great interest as multiphasic combinations of their composition induce new properties which can be exploited for innovative applications. However, the final features optimization requires a tight multiscale control of the structure, even during the elaboration early stages. This paper presents a multifrequency technique to investigate this evolution at mesoscopic scale and its bonds with other scales. A TMS resonator is used as a discrete spectral ultrasonic microrheometer from 5MHz to 50MHz. Then, soft matter can be described as an elastic structure, due to macromolecular interactions, immersed in an effective viscous fluid. An original model of the measured mechanical impedance is proposed and enables the simultaneous monitoring of the effective viscosity and the internal structure. It is based on fractional calculus. In addition to complex shear modulus, the evolution of a fractional parameter, ranging from zero for solids to one for Newtonian fluids, can be studied. The model and the experimental set-up are validated with various complex materials: Newtonian glycerol mixtures, cosmetic emulsions, and silica gels. Effective viscosity accuracy is demonstrated (less than 5% of error for Newtonian fluids). Structural values of complex fluids range from 0.6 (gels) to 1 (liquids). The extracted structural parameter can be linked to the fractal dimension. Hence, this technique is relevant to describe soft matter structure. Moreover, the structural parameter on-line monitoring can be useful to optimize the elaboration process of new products. Indeed, a microscopic characteristic time can be extracted and correlated to the macroscopic gelation time.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2021.3130037</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acoustics ; Emulsions ; Evolution ; Fluids ; Fractal geometry ; Fractional calculus ; Fractional derivative calculus ; Mathematical models ; Mechanical impedance ; Mechanical properties ; Mechanics ; Monitoring ; Newtonian fluids ; Optimization ; Parameters ; Physics ; Shear modulus ; Silica gel ; Silicon dioxide ; soft matter ; Solids ; Strain ; Stress ; TSM resonator ; ultrasonic microrheology ; Viscosity ; Viscous fluids</subject><ispartof>IEEE sensors journal, 2022-01, Vol.22 (1), p.162-173</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-354b74b6347ab72abfd35ad87e3bf54e9aff3a239814eace3e9dbec2f9b1d6c03</citedby><cites>FETCH-LOGICAL-c327t-354b74b6347ab72abfd35ad87e3bf54e9aff3a239814eace3e9dbec2f9b1d6c03</cites><orcidid>0000-0002-1333-6086 ; 0000-0002-0273-4986 ; 0000-0002-8598-6053 ; 0000-0002-7055-1524 ; 0000-0002-8798-5361 ; 0000-0002-3982-0853 ; 0000-0003-2252-7332</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9625662$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03634636$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gauthier, Vincent</creatorcontrib><creatorcontrib>Caplain, Emmanuel</creatorcontrib><creatorcontrib>Serfaty, Stephane</creatorcontrib><creatorcontrib>Michiel, Magalie</creatorcontrib><creatorcontrib>Griesmar, Pascal</creatorcontrib><creatorcontrib>Wilkie-Chancellier, Nicolas</creatorcontrib><title>Soft Matter Characterization From Ultrasonic Microrheology and Fractional Calculus</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Understanding soft matter mechanical behavior is of great interest as multiphasic combinations of their composition induce new properties which can be exploited for innovative applications. However, the final features optimization requires a tight multiscale control of the structure, even during the elaboration early stages. This paper presents a multifrequency technique to investigate this evolution at mesoscopic scale and its bonds with other scales. A TMS resonator is used as a discrete spectral ultrasonic microrheometer from 5MHz to 50MHz. Then, soft matter can be described as an elastic structure, due to macromolecular interactions, immersed in an effective viscous fluid. An original model of the measured mechanical impedance is proposed and enables the simultaneous monitoring of the effective viscosity and the internal structure. It is based on fractional calculus. In addition to complex shear modulus, the evolution of a fractional parameter, ranging from zero for solids to one for Newtonian fluids, can be studied. The model and the experimental set-up are validated with various complex materials: Newtonian glycerol mixtures, cosmetic emulsions, and silica gels. Effective viscosity accuracy is demonstrated (less than 5% of error for Newtonian fluids). Structural values of complex fluids range from 0.6 (gels) to 1 (liquids). The extracted structural parameter can be linked to the fractal dimension. Hence, this technique is relevant to describe soft matter structure. Moreover, the structural parameter on-line monitoring can be useful to optimize the elaboration process of new products. Indeed, a microscopic characteristic time can be extracted and correlated to the macroscopic gelation time.</description><subject>Acoustics</subject><subject>Emulsions</subject><subject>Evolution</subject><subject>Fluids</subject><subject>Fractal geometry</subject><subject>Fractional calculus</subject><subject>Fractional derivative calculus</subject><subject>Mathematical models</subject><subject>Mechanical impedance</subject><subject>Mechanical properties</subject><subject>Mechanics</subject><subject>Monitoring</subject><subject>Newtonian fluids</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Physics</subject><subject>Shear modulus</subject><subject>Silica gel</subject><subject>Silicon dioxide</subject><subject>soft matter</subject><subject>Solids</subject><subject>Strain</subject><subject>Stress</subject><subject>TSM resonator</subject><subject>ultrasonic microrheology</subject><subject>Viscosity</subject><subject>Viscous fluids</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE9Lw0AQxYMoWKsfQLwEPHlI3d3ZP82xlNYqrYK14G2ZJBubknbrbiLUT--GSk_zGH7vMfOi6JaSAaUkfXxZTl4HjDA6AAqEgDqLelSIYUIVH553GkjCQX1eRlfebwihqRKqF70vbdnEC2wa4-LxGh3mQVW_2FR2F0-d3carunHo7a7K40WVO-vWxtb26xDjrghEMAQU63iMdd7Wrb-OLkqsvbn5n_1oNZ18jGfJ_O3peTyaJzkw1SQgeKZ4JoErzBTDrCxAYDFUBrJScJNiWQIySIeUG8wNmLTITM7KNKOFzAn0o4dj7hprvXfVFt1BW6z0bDTX3Y5ACJcgf2hg74_s3tnv1vhGb2zrwtVeM0kFlZILHih6pMKX3jtTnmIp0V3NuqtZdzXr_5qD5-7oqYwxJz6VTEjJ4A-JkHmt</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Gauthier, Vincent</creator><creator>Caplain, Emmanuel</creator><creator>Serfaty, Stephane</creator><creator>Michiel, Magalie</creator><creator>Griesmar, Pascal</creator><creator>Wilkie-Chancellier, Nicolas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1333-6086</orcidid><orcidid>https://orcid.org/0000-0002-0273-4986</orcidid><orcidid>https://orcid.org/0000-0002-8598-6053</orcidid><orcidid>https://orcid.org/0000-0002-7055-1524</orcidid><orcidid>https://orcid.org/0000-0002-8798-5361</orcidid><orcidid>https://orcid.org/0000-0002-3982-0853</orcidid><orcidid>https://orcid.org/0000-0003-2252-7332</orcidid></search><sort><creationdate>20220101</creationdate><title>Soft Matter Characterization From Ultrasonic Microrheology and Fractional Calculus</title><author>Gauthier, Vincent ; Caplain, Emmanuel ; Serfaty, Stephane ; Michiel, Magalie ; Griesmar, Pascal ; Wilkie-Chancellier, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-354b74b6347ab72abfd35ad87e3bf54e9aff3a239814eace3e9dbec2f9b1d6c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustics</topic><topic>Emulsions</topic><topic>Evolution</topic><topic>Fluids</topic><topic>Fractal geometry</topic><topic>Fractional calculus</topic><topic>Fractional derivative calculus</topic><topic>Mathematical models</topic><topic>Mechanical impedance</topic><topic>Mechanical properties</topic><topic>Mechanics</topic><topic>Monitoring</topic><topic>Newtonian fluids</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Physics</topic><topic>Shear modulus</topic><topic>Silica gel</topic><topic>Silicon dioxide</topic><topic>soft matter</topic><topic>Solids</topic><topic>Strain</topic><topic>Stress</topic><topic>TSM resonator</topic><topic>ultrasonic microrheology</topic><topic>Viscosity</topic><topic>Viscous fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gauthier, Vincent</creatorcontrib><creatorcontrib>Caplain, Emmanuel</creatorcontrib><creatorcontrib>Serfaty, Stephane</creatorcontrib><creatorcontrib>Michiel, Magalie</creatorcontrib><creatorcontrib>Griesmar, Pascal</creatorcontrib><creatorcontrib>Wilkie-Chancellier, Nicolas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gauthier, Vincent</au><au>Caplain, Emmanuel</au><au>Serfaty, Stephane</au><au>Michiel, Magalie</au><au>Griesmar, Pascal</au><au>Wilkie-Chancellier, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soft Matter Characterization From Ultrasonic Microrheology and Fractional Calculus</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2022-01-01</date><risdate>2022</risdate><volume>22</volume><issue>1</issue><spage>162</spage><epage>173</epage><pages>162-173</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Understanding soft matter mechanical behavior is of great interest as multiphasic combinations of their composition induce new properties which can be exploited for innovative applications. However, the final features optimization requires a tight multiscale control of the structure, even during the elaboration early stages. This paper presents a multifrequency technique to investigate this evolution at mesoscopic scale and its bonds with other scales. A TMS resonator is used as a discrete spectral ultrasonic microrheometer from 5MHz to 50MHz. Then, soft matter can be described as an elastic structure, due to macromolecular interactions, immersed in an effective viscous fluid. An original model of the measured mechanical impedance is proposed and enables the simultaneous monitoring of the effective viscosity and the internal structure. It is based on fractional calculus. In addition to complex shear modulus, the evolution of a fractional parameter, ranging from zero for solids to one for Newtonian fluids, can be studied. The model and the experimental set-up are validated with various complex materials: Newtonian glycerol mixtures, cosmetic emulsions, and silica gels. Effective viscosity accuracy is demonstrated (less than 5% of error for Newtonian fluids). Structural values of complex fluids range from 0.6 (gels) to 1 (liquids). The extracted structural parameter can be linked to the fractal dimension. Hence, this technique is relevant to describe soft matter structure. Moreover, the structural parameter on-line monitoring can be useful to optimize the elaboration process of new products. Indeed, a microscopic characteristic time can be extracted and correlated to the macroscopic gelation time.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2021.3130037</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1333-6086</orcidid><orcidid>https://orcid.org/0000-0002-0273-4986</orcidid><orcidid>https://orcid.org/0000-0002-8598-6053</orcidid><orcidid>https://orcid.org/0000-0002-7055-1524</orcidid><orcidid>https://orcid.org/0000-0002-8798-5361</orcidid><orcidid>https://orcid.org/0000-0002-3982-0853</orcidid><orcidid>https://orcid.org/0000-0003-2252-7332</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2022-01, Vol.22 (1), p.162-173
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_9625662
source IEEE Xplore (Online service)
subjects Acoustics
Emulsions
Evolution
Fluids
Fractal geometry
Fractional calculus
Fractional derivative calculus
Mathematical models
Mechanical impedance
Mechanical properties
Mechanics
Monitoring
Newtonian fluids
Optimization
Parameters
Physics
Shear modulus
Silica gel
Silicon dioxide
soft matter
Solids
Strain
Stress
TSM resonator
ultrasonic microrheology
Viscosity
Viscous fluids
title Soft Matter Characterization From Ultrasonic Microrheology and Fractional Calculus
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A49%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soft%20Matter%20Characterization%20From%20Ultrasonic%20Microrheology%20and%20Fractional%20Calculus&rft.jtitle=IEEE%20sensors%20journal&rft.au=Gauthier,%20Vincent&rft.date=2022-01-01&rft.volume=22&rft.issue=1&rft.spage=162&rft.epage=173&rft.pages=162-173&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2021.3130037&rft_dat=%3Cproquest_ieee_%3E2615166454%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-354b74b6347ab72abfd35ad87e3bf54e9aff3a239814eace3e9dbec2f9b1d6c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2615166454&rft_id=info:pmid/&rft_ieee_id=9625662&rfr_iscdi=true