Loading…
Soft Matter Characterization From Ultrasonic Microrheology and Fractional Calculus
Understanding soft matter mechanical behavior is of great interest as multiphasic combinations of their composition induce new properties which can be exploited for innovative applications. However, the final features optimization requires a tight multiscale control of the structure, even during the...
Saved in:
Published in: | IEEE sensors journal 2022-01, Vol.22 (1), p.162-173 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c327t-354b74b6347ab72abfd35ad87e3bf54e9aff3a239814eace3e9dbec2f9b1d6c03 |
---|---|
cites | cdi_FETCH-LOGICAL-c327t-354b74b6347ab72abfd35ad87e3bf54e9aff3a239814eace3e9dbec2f9b1d6c03 |
container_end_page | 173 |
container_issue | 1 |
container_start_page | 162 |
container_title | IEEE sensors journal |
container_volume | 22 |
creator | Gauthier, Vincent Caplain, Emmanuel Serfaty, Stephane Michiel, Magalie Griesmar, Pascal Wilkie-Chancellier, Nicolas |
description | Understanding soft matter mechanical behavior is of great interest as multiphasic combinations of their composition induce new properties which can be exploited for innovative applications. However, the final features optimization requires a tight multiscale control of the structure, even during the elaboration early stages. This paper presents a multifrequency technique to investigate this evolution at mesoscopic scale and its bonds with other scales. A TMS resonator is used as a discrete spectral ultrasonic microrheometer from 5MHz to 50MHz. Then, soft matter can be described as an elastic structure, due to macromolecular interactions, immersed in an effective viscous fluid. An original model of the measured mechanical impedance is proposed and enables the simultaneous monitoring of the effective viscosity and the internal structure. It is based on fractional calculus. In addition to complex shear modulus, the evolution of a fractional parameter, ranging from zero for solids to one for Newtonian fluids, can be studied. The model and the experimental set-up are validated with various complex materials: Newtonian glycerol mixtures, cosmetic emulsions, and silica gels. Effective viscosity accuracy is demonstrated (less than 5% of error for Newtonian fluids). Structural values of complex fluids range from 0.6 (gels) to 1 (liquids). The extracted structural parameter can be linked to the fractal dimension. Hence, this technique is relevant to describe soft matter structure. Moreover, the structural parameter on-line monitoring can be useful to optimize the elaboration process of new products. Indeed, a microscopic characteristic time can be extracted and correlated to the macroscopic gelation time. |
doi_str_mv | 10.1109/JSEN.2021.3130037 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9625662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9625662</ieee_id><sourcerecordid>2615166454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-354b74b6347ab72abfd35ad87e3bf54e9aff3a239814eace3e9dbec2f9b1d6c03</originalsourceid><addsrcrecordid>eNo9kE9Lw0AQxYMoWKsfQLwEPHlI3d3ZP82xlNYqrYK14G2ZJBubknbrbiLUT--GSk_zGH7vMfOi6JaSAaUkfXxZTl4HjDA6AAqEgDqLelSIYUIVH553GkjCQX1eRlfebwihqRKqF70vbdnEC2wa4-LxGh3mQVW_2FR2F0-d3carunHo7a7K40WVO-vWxtb26xDjrghEMAQU63iMdd7Wrb-OLkqsvbn5n_1oNZ18jGfJ_O3peTyaJzkw1SQgeKZ4JoErzBTDrCxAYDFUBrJScJNiWQIySIeUG8wNmLTITM7KNKOFzAn0o4dj7hprvXfVFt1BW6z0bDTX3Y5ACJcgf2hg74_s3tnv1vhGb2zrwtVeM0kFlZILHih6pMKX3jtTnmIp0V3NuqtZdzXr_5qD5-7oqYwxJz6VTEjJ4A-JkHmt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615166454</pqid></control><display><type>article</type><title>Soft Matter Characterization From Ultrasonic Microrheology and Fractional Calculus</title><source>IEEE Xplore (Online service)</source><creator>Gauthier, Vincent ; Caplain, Emmanuel ; Serfaty, Stephane ; Michiel, Magalie ; Griesmar, Pascal ; Wilkie-Chancellier, Nicolas</creator><creatorcontrib>Gauthier, Vincent ; Caplain, Emmanuel ; Serfaty, Stephane ; Michiel, Magalie ; Griesmar, Pascal ; Wilkie-Chancellier, Nicolas</creatorcontrib><description>Understanding soft matter mechanical behavior is of great interest as multiphasic combinations of their composition induce new properties which can be exploited for innovative applications. However, the final features optimization requires a tight multiscale control of the structure, even during the elaboration early stages. This paper presents a multifrequency technique to investigate this evolution at mesoscopic scale and its bonds with other scales. A TMS resonator is used as a discrete spectral ultrasonic microrheometer from 5MHz to 50MHz. Then, soft matter can be described as an elastic structure, due to macromolecular interactions, immersed in an effective viscous fluid. An original model of the measured mechanical impedance is proposed and enables the simultaneous monitoring of the effective viscosity and the internal structure. It is based on fractional calculus. In addition to complex shear modulus, the evolution of a fractional parameter, ranging from zero for solids to one for Newtonian fluids, can be studied. The model and the experimental set-up are validated with various complex materials: Newtonian glycerol mixtures, cosmetic emulsions, and silica gels. Effective viscosity accuracy is demonstrated (less than 5% of error for Newtonian fluids). Structural values of complex fluids range from 0.6 (gels) to 1 (liquids). The extracted structural parameter can be linked to the fractal dimension. Hence, this technique is relevant to describe soft matter structure. Moreover, the structural parameter on-line monitoring can be useful to optimize the elaboration process of new products. Indeed, a microscopic characteristic time can be extracted and correlated to the macroscopic gelation time.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2021.3130037</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acoustics ; Emulsions ; Evolution ; Fluids ; Fractal geometry ; Fractional calculus ; Fractional derivative calculus ; Mathematical models ; Mechanical impedance ; Mechanical properties ; Mechanics ; Monitoring ; Newtonian fluids ; Optimization ; Parameters ; Physics ; Shear modulus ; Silica gel ; Silicon dioxide ; soft matter ; Solids ; Strain ; Stress ; TSM resonator ; ultrasonic microrheology ; Viscosity ; Viscous fluids</subject><ispartof>IEEE sensors journal, 2022-01, Vol.22 (1), p.162-173</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-354b74b6347ab72abfd35ad87e3bf54e9aff3a239814eace3e9dbec2f9b1d6c03</citedby><cites>FETCH-LOGICAL-c327t-354b74b6347ab72abfd35ad87e3bf54e9aff3a239814eace3e9dbec2f9b1d6c03</cites><orcidid>0000-0002-1333-6086 ; 0000-0002-0273-4986 ; 0000-0002-8598-6053 ; 0000-0002-7055-1524 ; 0000-0002-8798-5361 ; 0000-0002-3982-0853 ; 0000-0003-2252-7332</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9625662$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03634636$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gauthier, Vincent</creatorcontrib><creatorcontrib>Caplain, Emmanuel</creatorcontrib><creatorcontrib>Serfaty, Stephane</creatorcontrib><creatorcontrib>Michiel, Magalie</creatorcontrib><creatorcontrib>Griesmar, Pascal</creatorcontrib><creatorcontrib>Wilkie-Chancellier, Nicolas</creatorcontrib><title>Soft Matter Characterization From Ultrasonic Microrheology and Fractional Calculus</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Understanding soft matter mechanical behavior is of great interest as multiphasic combinations of their composition induce new properties which can be exploited for innovative applications. However, the final features optimization requires a tight multiscale control of the structure, even during the elaboration early stages. This paper presents a multifrequency technique to investigate this evolution at mesoscopic scale and its bonds with other scales. A TMS resonator is used as a discrete spectral ultrasonic microrheometer from 5MHz to 50MHz. Then, soft matter can be described as an elastic structure, due to macromolecular interactions, immersed in an effective viscous fluid. An original model of the measured mechanical impedance is proposed and enables the simultaneous monitoring of the effective viscosity and the internal structure. It is based on fractional calculus. In addition to complex shear modulus, the evolution of a fractional parameter, ranging from zero for solids to one for Newtonian fluids, can be studied. The model and the experimental set-up are validated with various complex materials: Newtonian glycerol mixtures, cosmetic emulsions, and silica gels. Effective viscosity accuracy is demonstrated (less than 5% of error for Newtonian fluids). Structural values of complex fluids range from 0.6 (gels) to 1 (liquids). The extracted structural parameter can be linked to the fractal dimension. Hence, this technique is relevant to describe soft matter structure. Moreover, the structural parameter on-line monitoring can be useful to optimize the elaboration process of new products. Indeed, a microscopic characteristic time can be extracted and correlated to the macroscopic gelation time.</description><subject>Acoustics</subject><subject>Emulsions</subject><subject>Evolution</subject><subject>Fluids</subject><subject>Fractal geometry</subject><subject>Fractional calculus</subject><subject>Fractional derivative calculus</subject><subject>Mathematical models</subject><subject>Mechanical impedance</subject><subject>Mechanical properties</subject><subject>Mechanics</subject><subject>Monitoring</subject><subject>Newtonian fluids</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Physics</subject><subject>Shear modulus</subject><subject>Silica gel</subject><subject>Silicon dioxide</subject><subject>soft matter</subject><subject>Solids</subject><subject>Strain</subject><subject>Stress</subject><subject>TSM resonator</subject><subject>ultrasonic microrheology</subject><subject>Viscosity</subject><subject>Viscous fluids</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE9Lw0AQxYMoWKsfQLwEPHlI3d3ZP82xlNYqrYK14G2ZJBubknbrbiLUT--GSk_zGH7vMfOi6JaSAaUkfXxZTl4HjDA6AAqEgDqLelSIYUIVH553GkjCQX1eRlfebwihqRKqF70vbdnEC2wa4-LxGh3mQVW_2FR2F0-d3carunHo7a7K40WVO-vWxtb26xDjrghEMAQU63iMdd7Wrb-OLkqsvbn5n_1oNZ18jGfJ_O3peTyaJzkw1SQgeKZ4JoErzBTDrCxAYDFUBrJScJNiWQIySIeUG8wNmLTITM7KNKOFzAn0o4dj7hprvXfVFt1BW6z0bDTX3Y5ACJcgf2hg74_s3tnv1vhGb2zrwtVeM0kFlZILHih6pMKX3jtTnmIp0V3NuqtZdzXr_5qD5-7oqYwxJz6VTEjJ4A-JkHmt</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Gauthier, Vincent</creator><creator>Caplain, Emmanuel</creator><creator>Serfaty, Stephane</creator><creator>Michiel, Magalie</creator><creator>Griesmar, Pascal</creator><creator>Wilkie-Chancellier, Nicolas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1333-6086</orcidid><orcidid>https://orcid.org/0000-0002-0273-4986</orcidid><orcidid>https://orcid.org/0000-0002-8598-6053</orcidid><orcidid>https://orcid.org/0000-0002-7055-1524</orcidid><orcidid>https://orcid.org/0000-0002-8798-5361</orcidid><orcidid>https://orcid.org/0000-0002-3982-0853</orcidid><orcidid>https://orcid.org/0000-0003-2252-7332</orcidid></search><sort><creationdate>20220101</creationdate><title>Soft Matter Characterization From Ultrasonic Microrheology and Fractional Calculus</title><author>Gauthier, Vincent ; Caplain, Emmanuel ; Serfaty, Stephane ; Michiel, Magalie ; Griesmar, Pascal ; Wilkie-Chancellier, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-354b74b6347ab72abfd35ad87e3bf54e9aff3a239814eace3e9dbec2f9b1d6c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustics</topic><topic>Emulsions</topic><topic>Evolution</topic><topic>Fluids</topic><topic>Fractal geometry</topic><topic>Fractional calculus</topic><topic>Fractional derivative calculus</topic><topic>Mathematical models</topic><topic>Mechanical impedance</topic><topic>Mechanical properties</topic><topic>Mechanics</topic><topic>Monitoring</topic><topic>Newtonian fluids</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Physics</topic><topic>Shear modulus</topic><topic>Silica gel</topic><topic>Silicon dioxide</topic><topic>soft matter</topic><topic>Solids</topic><topic>Strain</topic><topic>Stress</topic><topic>TSM resonator</topic><topic>ultrasonic microrheology</topic><topic>Viscosity</topic><topic>Viscous fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gauthier, Vincent</creatorcontrib><creatorcontrib>Caplain, Emmanuel</creatorcontrib><creatorcontrib>Serfaty, Stephane</creatorcontrib><creatorcontrib>Michiel, Magalie</creatorcontrib><creatorcontrib>Griesmar, Pascal</creatorcontrib><creatorcontrib>Wilkie-Chancellier, Nicolas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gauthier, Vincent</au><au>Caplain, Emmanuel</au><au>Serfaty, Stephane</au><au>Michiel, Magalie</au><au>Griesmar, Pascal</au><au>Wilkie-Chancellier, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soft Matter Characterization From Ultrasonic Microrheology and Fractional Calculus</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2022-01-01</date><risdate>2022</risdate><volume>22</volume><issue>1</issue><spage>162</spage><epage>173</epage><pages>162-173</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Understanding soft matter mechanical behavior is of great interest as multiphasic combinations of their composition induce new properties which can be exploited for innovative applications. However, the final features optimization requires a tight multiscale control of the structure, even during the elaboration early stages. This paper presents a multifrequency technique to investigate this evolution at mesoscopic scale and its bonds with other scales. A TMS resonator is used as a discrete spectral ultrasonic microrheometer from 5MHz to 50MHz. Then, soft matter can be described as an elastic structure, due to macromolecular interactions, immersed in an effective viscous fluid. An original model of the measured mechanical impedance is proposed and enables the simultaneous monitoring of the effective viscosity and the internal structure. It is based on fractional calculus. In addition to complex shear modulus, the evolution of a fractional parameter, ranging from zero for solids to one for Newtonian fluids, can be studied. The model and the experimental set-up are validated with various complex materials: Newtonian glycerol mixtures, cosmetic emulsions, and silica gels. Effective viscosity accuracy is demonstrated (less than 5% of error for Newtonian fluids). Structural values of complex fluids range from 0.6 (gels) to 1 (liquids). The extracted structural parameter can be linked to the fractal dimension. Hence, this technique is relevant to describe soft matter structure. Moreover, the structural parameter on-line monitoring can be useful to optimize the elaboration process of new products. Indeed, a microscopic characteristic time can be extracted and correlated to the macroscopic gelation time.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2021.3130037</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1333-6086</orcidid><orcidid>https://orcid.org/0000-0002-0273-4986</orcidid><orcidid>https://orcid.org/0000-0002-8598-6053</orcidid><orcidid>https://orcid.org/0000-0002-7055-1524</orcidid><orcidid>https://orcid.org/0000-0002-8798-5361</orcidid><orcidid>https://orcid.org/0000-0002-3982-0853</orcidid><orcidid>https://orcid.org/0000-0003-2252-7332</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2022-01, Vol.22 (1), p.162-173 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_9625662 |
source | IEEE Xplore (Online service) |
subjects | Acoustics Emulsions Evolution Fluids Fractal geometry Fractional calculus Fractional derivative calculus Mathematical models Mechanical impedance Mechanical properties Mechanics Monitoring Newtonian fluids Optimization Parameters Physics Shear modulus Silica gel Silicon dioxide soft matter Solids Strain Stress TSM resonator ultrasonic microrheology Viscosity Viscous fluids |
title | Soft Matter Characterization From Ultrasonic Microrheology and Fractional Calculus |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A49%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soft%20Matter%20Characterization%20From%20Ultrasonic%20Microrheology%20and%20Fractional%20Calculus&rft.jtitle=IEEE%20sensors%20journal&rft.au=Gauthier,%20Vincent&rft.date=2022-01-01&rft.volume=22&rft.issue=1&rft.spage=162&rft.epage=173&rft.pages=162-173&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2021.3130037&rft_dat=%3Cproquest_ieee_%3E2615166454%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-354b74b6347ab72abfd35ad87e3bf54e9aff3a239814eace3e9dbec2f9b1d6c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2615166454&rft_id=info:pmid/&rft_ieee_id=9625662&rfr_iscdi=true |