Loading…

Identify What You are Doing: Smartphone Apps Fingerprinting on Cellular Network Traffic

Apps installed on smartphones may reveal users' privacy, which is often under malicious attacks. Most privacy attacks are based on network layer traffic. However, the encryption used in the cellular network makes it difficult for a passive adversary to obtain the traffic. In this paper, we leve...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhai, Liuqun, Qiao, Zhuang, Wang, Zhongfang, Wei, Dong
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 7
container_issue
container_start_page 1
container_title
container_volume
creator Zhai, Liuqun
Qiao, Zhuang
Wang, Zhongfang
Wei, Dong
description Apps installed on smartphones may reveal users' privacy, which is often under malicious attacks. Most privacy attacks are based on network layer traffic. However, the encryption used in the cellular network makes it difficult for a passive adversary to obtain the traffic. In this paper, we leverage the data link layer metadata, such as PDCP packet size, distribution, and interarrival time, to create Apps fingerprints and then conduct a non-intrusive smartphone Apps privacy attack. We test three different smartphones on a 4G LTE laboratory network. On twenty popular Apps selected from the AppStore and Huawei AppGallary, we achieve an Fl-score ranging from 91.32% to 99.49%. Also, we investigate the effect of classification algorithms, time windows, monitoring duration and smartphone brands on Apps fingerprinting attack. Furthermore, we evaluate the performance of the attack using only downlink traffic, which is consistent with the actual attack scenario. Because the data link layer specifications of 4G LTE and 5G are similar, the method of Apps fingerprinting attack can be extended to the latest 5G networks.
doi_str_mv 10.1109/ISCC53001.2021.9631415
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9631415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9631415</ieee_id><sourcerecordid>9631415</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-cf6c2b56d5055b68571421d4327ef9305e4697aec41ccf8ecba3ad088c77b0293</originalsourceid><addsrcrecordid>eNotkMtKw0AYhUdBsNY-gSDzAolzv7gr0Wqh6KKV4qpMJv-0ozEJkxTp2xuwqwMHzsfHQeiekpxSYh-W66KQnBCaM8JobhWngsoLNLPaUKWkYFoIe4kmTAmWaW7sNbrp-y9CiJFMT9B2WUEzxHDC24Mb8Gd7xC4Bfmpjs3_E6x-Xhu7QNoDnXdfjxdhC6lIcJ80etw0uoK6PtUv4DYbfNn3jTXIhRH-LroKre5idc4o-Fs-b4jVbvb8si_kqi4zwIfNBeVZKVUkiZamM1FQwWgnONATLiQShrHbgBfU-GPCl464ixnitS8Isn6K7f24EgN1oNhqfducf-B_RRFKQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Identify What You are Doing: Smartphone Apps Fingerprinting on Cellular Network Traffic</title><source>IEEE Xplore All Conference Series</source><creator>Zhai, Liuqun ; Qiao, Zhuang ; Wang, Zhongfang ; Wei, Dong</creator><creatorcontrib>Zhai, Liuqun ; Qiao, Zhuang ; Wang, Zhongfang ; Wei, Dong</creatorcontrib><description>Apps installed on smartphones may reveal users' privacy, which is often under malicious attacks. Most privacy attacks are based on network layer traffic. However, the encryption used in the cellular network makes it difficult for a passive adversary to obtain the traffic. In this paper, we leverage the data link layer metadata, such as PDCP packet size, distribution, and interarrival time, to create Apps fingerprints and then conduct a non-intrusive smartphone Apps privacy attack. We test three different smartphones on a 4G LTE laboratory network. On twenty popular Apps selected from the AppStore and Huawei AppGallary, we achieve an Fl-score ranging from 91.32% to 99.49%. Also, we investigate the effect of classification algorithms, time windows, monitoring duration and smartphone brands on Apps fingerprinting attack. Furthermore, we evaluate the performance of the attack using only downlink traffic, which is consistent with the actual attack scenario. Because the data link layer specifications of 4G LTE and 5G are similar, the method of Apps fingerprinting attack can be extended to the latest 5G networks.</description><identifier>EISSN: 2642-7389</identifier><identifier>EISBN: 9781665427449</identifier><identifier>EISBN: 1665427442</identifier><identifier>DOI: 10.1109/ISCC53001.2021.9631415</identifier><language>eng</language><publisher>IEEE</publisher><subject>5G mobile communication ; Apps fingerprinting ; cellular network ; Cellular networks ; Downlink ; Encryption ; Fingerprint recognition ; Metadata ; Privacy ; privacy attack ; traffic identification</subject><ispartof>2021 IEEE Symposium on Computers and Communications (ISCC), 2021, p.1-7</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9631415$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9631415$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhai, Liuqun</creatorcontrib><creatorcontrib>Qiao, Zhuang</creatorcontrib><creatorcontrib>Wang, Zhongfang</creatorcontrib><creatorcontrib>Wei, Dong</creatorcontrib><title>Identify What You are Doing: Smartphone Apps Fingerprinting on Cellular Network Traffic</title><title>2021 IEEE Symposium on Computers and Communications (ISCC)</title><addtitle>ISCC</addtitle><description>Apps installed on smartphones may reveal users' privacy, which is often under malicious attacks. Most privacy attacks are based on network layer traffic. However, the encryption used in the cellular network makes it difficult for a passive adversary to obtain the traffic. In this paper, we leverage the data link layer metadata, such as PDCP packet size, distribution, and interarrival time, to create Apps fingerprints and then conduct a non-intrusive smartphone Apps privacy attack. We test three different smartphones on a 4G LTE laboratory network. On twenty popular Apps selected from the AppStore and Huawei AppGallary, we achieve an Fl-score ranging from 91.32% to 99.49%. Also, we investigate the effect of classification algorithms, time windows, monitoring duration and smartphone brands on Apps fingerprinting attack. Furthermore, we evaluate the performance of the attack using only downlink traffic, which is consistent with the actual attack scenario. Because the data link layer specifications of 4G LTE and 5G are similar, the method of Apps fingerprinting attack can be extended to the latest 5G networks.</description><subject>5G mobile communication</subject><subject>Apps fingerprinting</subject><subject>cellular network</subject><subject>Cellular networks</subject><subject>Downlink</subject><subject>Encryption</subject><subject>Fingerprint recognition</subject><subject>Metadata</subject><subject>Privacy</subject><subject>privacy attack</subject><subject>traffic identification</subject><issn>2642-7389</issn><isbn>9781665427449</isbn><isbn>1665427442</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtKw0AYhUdBsNY-gSDzAolzv7gr0Wqh6KKV4qpMJv-0ozEJkxTp2xuwqwMHzsfHQeiekpxSYh-W66KQnBCaM8JobhWngsoLNLPaUKWkYFoIe4kmTAmWaW7sNbrp-y9CiJFMT9B2WUEzxHDC24Mb8Gd7xC4Bfmpjs3_E6x-Xhu7QNoDnXdfjxdhC6lIcJ80etw0uoK6PtUv4DYbfNn3jTXIhRH-LroKre5idc4o-Fs-b4jVbvb8si_kqi4zwIfNBeVZKVUkiZamM1FQwWgnONATLiQShrHbgBfU-GPCl464ixnitS8Isn6K7f24EgN1oNhqfducf-B_RRFKQ</recordid><startdate>20210905</startdate><enddate>20210905</enddate><creator>Zhai, Liuqun</creator><creator>Qiao, Zhuang</creator><creator>Wang, Zhongfang</creator><creator>Wei, Dong</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20210905</creationdate><title>Identify What You are Doing: Smartphone Apps Fingerprinting on Cellular Network Traffic</title><author>Zhai, Liuqun ; Qiao, Zhuang ; Wang, Zhongfang ; Wei, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-cf6c2b56d5055b68571421d4327ef9305e4697aec41ccf8ecba3ad088c77b0293</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>5G mobile communication</topic><topic>Apps fingerprinting</topic><topic>cellular network</topic><topic>Cellular networks</topic><topic>Downlink</topic><topic>Encryption</topic><topic>Fingerprint recognition</topic><topic>Metadata</topic><topic>Privacy</topic><topic>privacy attack</topic><topic>traffic identification</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhai, Liuqun</creatorcontrib><creatorcontrib>Qiao, Zhuang</creatorcontrib><creatorcontrib>Wang, Zhongfang</creatorcontrib><creatorcontrib>Wei, Dong</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhai, Liuqun</au><au>Qiao, Zhuang</au><au>Wang, Zhongfang</au><au>Wei, Dong</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Identify What You are Doing: Smartphone Apps Fingerprinting on Cellular Network Traffic</atitle><btitle>2021 IEEE Symposium on Computers and Communications (ISCC)</btitle><stitle>ISCC</stitle><date>2021-09-05</date><risdate>2021</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><eissn>2642-7389</eissn><eisbn>9781665427449</eisbn><eisbn>1665427442</eisbn><abstract>Apps installed on smartphones may reveal users' privacy, which is often under malicious attacks. Most privacy attacks are based on network layer traffic. However, the encryption used in the cellular network makes it difficult for a passive adversary to obtain the traffic. In this paper, we leverage the data link layer metadata, such as PDCP packet size, distribution, and interarrival time, to create Apps fingerprints and then conduct a non-intrusive smartphone Apps privacy attack. We test three different smartphones on a 4G LTE laboratory network. On twenty popular Apps selected from the AppStore and Huawei AppGallary, we achieve an Fl-score ranging from 91.32% to 99.49%. Also, we investigate the effect of classification algorithms, time windows, monitoring duration and smartphone brands on Apps fingerprinting attack. Furthermore, we evaluate the performance of the attack using only downlink traffic, which is consistent with the actual attack scenario. Because the data link layer specifications of 4G LTE and 5G are similar, the method of Apps fingerprinting attack can be extended to the latest 5G networks.</abstract><pub>IEEE</pub><doi>10.1109/ISCC53001.2021.9631415</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2642-7389
ispartof 2021 IEEE Symposium on Computers and Communications (ISCC), 2021, p.1-7
issn 2642-7389
language eng
recordid cdi_ieee_primary_9631415
source IEEE Xplore All Conference Series
subjects 5G mobile communication
Apps fingerprinting
cellular network
Cellular networks
Downlink
Encryption
Fingerprint recognition
Metadata
Privacy
privacy attack
traffic identification
title Identify What You are Doing: Smartphone Apps Fingerprinting on Cellular Network Traffic
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A54%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Identify%20What%20You%20are%20Doing:%20Smartphone%20Apps%20Fingerprinting%20on%20Cellular%20Network%20Traffic&rft.btitle=2021%20IEEE%20Symposium%20on%20Computers%20and%20Communications%20(ISCC)&rft.au=Zhai,%20Liuqun&rft.date=2021-09-05&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.eissn=2642-7389&rft_id=info:doi/10.1109/ISCC53001.2021.9631415&rft.eisbn=9781665427449&rft.eisbn_list=1665427442&rft_dat=%3Cieee_CHZPO%3E9631415%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-cf6c2b56d5055b68571421d4327ef9305e4697aec41ccf8ecba3ad088c77b0293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9631415&rfr_iscdi=true