Loading…
Complex Parameter Rao, Wald, Gradient, and Durbin Tests for Multichannel Signal Detection
In the problem of multichannel signal detection, when it comes to the detector design criteria apart from the generalized likelihood ratio test, the traditional method is to cascade the real and imaginary parts of the parameters, and then substitute them into the real parameter statistics. This meth...
Saved in:
Published in: | IEEE transactions on signal processing 2022, Vol.70, p.117-131 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-664176d5139ca76798031001b9c26892c4f33acc7a06d90a6b9693f7095707b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-664176d5139ca76798031001b9c26892c4f33acc7a06d90a6b9693f7095707b3 |
container_end_page | 131 |
container_issue | |
container_start_page | 117 |
container_title | IEEE transactions on signal processing |
container_volume | 70 |
creator | Sun, Mengru Liu, Weijian Liu, Jun Hao, Chengpeng |
description | In the problem of multichannel signal detection, when it comes to the detector design criteria apart from the generalized likelihood ratio test, the traditional method is to cascade the real and imaginary parts of the parameters, and then substitute them into the real parameter statistics. This method is not succinct, and sometimes may be cumbersome and difficult to handle. Recently, a complex parameter Rao test was introduced by Kay and Zhu without the need of cascading the real and imaginary parts of the complex parameters when there is no nuisance parameter. Inspired by this work, we move a further step toward the complex parameter statistics of the Rao, Wald, gradient, and Durbin tests both with and without nuisance parameters, and derive the relationships between their real and complex parameter statistics. Moreover, for a special Fisher information matrix which often holds in practice, we derive a series of simple forms of the complex parameter statistics for the above four criteria, and discuss their application conditions in linear multivariate complex circular Gaussian distribution. Finally, several application examples are given to confirm the proposed schemes. |
doi_str_mv | 10.1109/TSP.2021.3132485 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9635684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9635684</ieee_id><sourcerecordid>2617489634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-664176d5139ca76798031001b9c26892c4f33acc7a06d90a6b9693f7095707b3</originalsourceid><addsrcrecordid>eNo9kM9LwzAYhoMoOKd3wUvA6zrzq0lzlE2nMHG4gnoKaZpqRpfOpAX9741sePq-w_u-PDwAXGI0xRjJm3K9mhJE8JRiSliRH4ERlgxniAl-nH6U0ywvxNspOItxgxBmTPIReJ91211rv-FKB721vQ3wRXcT-KrbegIXQdfO-n4Cta_hfAiV87C0sY-w6QJ8GtremU_tvW3h2n143cJ52jC96_w5OGl0G-3F4Y5BeX9Xzh6y5fPicXa7zAyRuM84Z1jwOsdUGi24kAWiOOFV0hBeSGJYQ6k2RmjEa4k0rySXtBFI5gKJio7B9X52F7qvIaGpTTeERBIV4ViwQnLKUgrtUyZ0MQbbqF1wWx1-FEbqz59K_tSfP3XwlypX-4qz1v7H01rOC0Z_AXpnaa8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617489634</pqid></control><display><type>article</type><title>Complex Parameter Rao, Wald, Gradient, and Durbin Tests for Multichannel Signal Detection</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Sun, Mengru ; Liu, Weijian ; Liu, Jun ; Hao, Chengpeng</creator><creatorcontrib>Sun, Mengru ; Liu, Weijian ; Liu, Jun ; Hao, Chengpeng</creatorcontrib><description>In the problem of multichannel signal detection, when it comes to the detector design criteria apart from the generalized likelihood ratio test, the traditional method is to cascade the real and imaginary parts of the parameters, and then substitute them into the real parameter statistics. This method is not succinct, and sometimes may be cumbersome and difficult to handle. Recently, a complex parameter Rao test was introduced by Kay and Zhu without the need of cascading the real and imaginary parts of the complex parameters when there is no nuisance parameter. Inspired by this work, we move a further step toward the complex parameter statistics of the Rao, Wald, gradient, and Durbin tests both with and without nuisance parameters, and derive the relationships between their real and complex parameter statistics. Moreover, for a special Fisher information matrix which often holds in practice, we derive a series of simple forms of the complex parameter statistics for the above four criteria, and discuss their application conditions in linear multivariate complex circular Gaussian distribution. Finally, several application examples are given to confirm the proposed schemes.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2021.3132485</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Complex-valued parameter ; Covariance matrices ; Design criteria ; Detectors ; Durbin test ; Fisher information ; Fisher information matrix ; Gaussian distribution ; gradient test ; Likelihood ratio ; Maximum likelihood estimation ; Normal distribution ; Nuisance ; Parameters ; Probability density function ; Rao test ; Signal detection ; Statistical tests ; Sun ; Wald test</subject><ispartof>IEEE transactions on signal processing, 2022, Vol.70, p.117-131</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-664176d5139ca76798031001b9c26892c4f33acc7a06d90a6b9693f7095707b3</citedby><cites>FETCH-LOGICAL-c291t-664176d5139ca76798031001b9c26892c4f33acc7a06d90a6b9693f7095707b3</cites><orcidid>0000-0002-7193-0622 ; 0000-0003-3603-6307 ; 0000-0001-9643-1099 ; 0000-0002-0330-8073</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9635684$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Sun, Mengru</creatorcontrib><creatorcontrib>Liu, Weijian</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Hao, Chengpeng</creatorcontrib><title>Complex Parameter Rao, Wald, Gradient, and Durbin Tests for Multichannel Signal Detection</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In the problem of multichannel signal detection, when it comes to the detector design criteria apart from the generalized likelihood ratio test, the traditional method is to cascade the real and imaginary parts of the parameters, and then substitute them into the real parameter statistics. This method is not succinct, and sometimes may be cumbersome and difficult to handle. Recently, a complex parameter Rao test was introduced by Kay and Zhu without the need of cascading the real and imaginary parts of the complex parameters when there is no nuisance parameter. Inspired by this work, we move a further step toward the complex parameter statistics of the Rao, Wald, gradient, and Durbin tests both with and without nuisance parameters, and derive the relationships between their real and complex parameter statistics. Moreover, for a special Fisher information matrix which often holds in practice, we derive a series of simple forms of the complex parameter statistics for the above four criteria, and discuss their application conditions in linear multivariate complex circular Gaussian distribution. Finally, several application examples are given to confirm the proposed schemes.</description><subject>Complex-valued parameter</subject><subject>Covariance matrices</subject><subject>Design criteria</subject><subject>Detectors</subject><subject>Durbin test</subject><subject>Fisher information</subject><subject>Fisher information matrix</subject><subject>Gaussian distribution</subject><subject>gradient test</subject><subject>Likelihood ratio</subject><subject>Maximum likelihood estimation</subject><subject>Normal distribution</subject><subject>Nuisance</subject><subject>Parameters</subject><subject>Probability density function</subject><subject>Rao test</subject><subject>Signal detection</subject><subject>Statistical tests</subject><subject>Sun</subject><subject>Wald test</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kM9LwzAYhoMoOKd3wUvA6zrzq0lzlE2nMHG4gnoKaZpqRpfOpAX9741sePq-w_u-PDwAXGI0xRjJm3K9mhJE8JRiSliRH4ERlgxniAl-nH6U0ywvxNspOItxgxBmTPIReJ91211rv-FKB721vQ3wRXcT-KrbegIXQdfO-n4Cta_hfAiV87C0sY-w6QJ8GtremU_tvW3h2n143cJ52jC96_w5OGl0G-3F4Y5BeX9Xzh6y5fPicXa7zAyRuM84Z1jwOsdUGi24kAWiOOFV0hBeSGJYQ6k2RmjEa4k0rySXtBFI5gKJio7B9X52F7qvIaGpTTeERBIV4ViwQnLKUgrtUyZ0MQbbqF1wWx1-FEbqz59K_tSfP3XwlypX-4qz1v7H01rOC0Z_AXpnaa8</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Sun, Mengru</creator><creator>Liu, Weijian</creator><creator>Liu, Jun</creator><creator>Hao, Chengpeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7193-0622</orcidid><orcidid>https://orcid.org/0000-0003-3603-6307</orcidid><orcidid>https://orcid.org/0000-0001-9643-1099</orcidid><orcidid>https://orcid.org/0000-0002-0330-8073</orcidid></search><sort><creationdate>2022</creationdate><title>Complex Parameter Rao, Wald, Gradient, and Durbin Tests for Multichannel Signal Detection</title><author>Sun, Mengru ; Liu, Weijian ; Liu, Jun ; Hao, Chengpeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-664176d5139ca76798031001b9c26892c4f33acc7a06d90a6b9693f7095707b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Complex-valued parameter</topic><topic>Covariance matrices</topic><topic>Design criteria</topic><topic>Detectors</topic><topic>Durbin test</topic><topic>Fisher information</topic><topic>Fisher information matrix</topic><topic>Gaussian distribution</topic><topic>gradient test</topic><topic>Likelihood ratio</topic><topic>Maximum likelihood estimation</topic><topic>Normal distribution</topic><topic>Nuisance</topic><topic>Parameters</topic><topic>Probability density function</topic><topic>Rao test</topic><topic>Signal detection</topic><topic>Statistical tests</topic><topic>Sun</topic><topic>Wald test</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Mengru</creatorcontrib><creatorcontrib>Liu, Weijian</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Hao, Chengpeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Mengru</au><au>Liu, Weijian</au><au>Liu, Jun</au><au>Hao, Chengpeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complex Parameter Rao, Wald, Gradient, and Durbin Tests for Multichannel Signal Detection</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2022</date><risdate>2022</risdate><volume>70</volume><spage>117</spage><epage>131</epage><pages>117-131</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In the problem of multichannel signal detection, when it comes to the detector design criteria apart from the generalized likelihood ratio test, the traditional method is to cascade the real and imaginary parts of the parameters, and then substitute them into the real parameter statistics. This method is not succinct, and sometimes may be cumbersome and difficult to handle. Recently, a complex parameter Rao test was introduced by Kay and Zhu without the need of cascading the real and imaginary parts of the complex parameters when there is no nuisance parameter. Inspired by this work, we move a further step toward the complex parameter statistics of the Rao, Wald, gradient, and Durbin tests both with and without nuisance parameters, and derive the relationships between their real and complex parameter statistics. Moreover, for a special Fisher information matrix which often holds in practice, we derive a series of simple forms of the complex parameter statistics for the above four criteria, and discuss their application conditions in linear multivariate complex circular Gaussian distribution. Finally, several application examples are given to confirm the proposed schemes.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2021.3132485</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7193-0622</orcidid><orcidid>https://orcid.org/0000-0003-3603-6307</orcidid><orcidid>https://orcid.org/0000-0001-9643-1099</orcidid><orcidid>https://orcid.org/0000-0002-0330-8073</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2022, Vol.70, p.117-131 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_ieee_primary_9635684 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Complex-valued parameter Covariance matrices Design criteria Detectors Durbin test Fisher information Fisher information matrix Gaussian distribution gradient test Likelihood ratio Maximum likelihood estimation Normal distribution Nuisance Parameters Probability density function Rao test Signal detection Statistical tests Sun Wald test |
title | Complex Parameter Rao, Wald, Gradient, and Durbin Tests for Multichannel Signal Detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A41%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complex%20Parameter%20Rao,%20Wald,%20Gradient,%20and%20Durbin%20Tests%20for%20Multichannel%20Signal%20Detection&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Sun,%20Mengru&rft.date=2022&rft.volume=70&rft.spage=117&rft.epage=131&rft.pages=117-131&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2021.3132485&rft_dat=%3Cproquest_ieee_%3E2617489634%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-664176d5139ca76798031001b9c26892c4f33acc7a06d90a6b9693f7095707b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2617489634&rft_id=info:pmid/&rft_ieee_id=9635684&rfr_iscdi=true |