Loading…

Complex Parameter Rao, Wald, Gradient, and Durbin Tests for Multichannel Signal Detection

In the problem of multichannel signal detection, when it comes to the detector design criteria apart from the generalized likelihood ratio test, the traditional method is to cascade the real and imaginary parts of the parameters, and then substitute them into the real parameter statistics. This meth...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 2022, Vol.70, p.117-131
Main Authors: Sun, Mengru, Liu, Weijian, Liu, Jun, Hao, Chengpeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-664176d5139ca76798031001b9c26892c4f33acc7a06d90a6b9693f7095707b3
cites cdi_FETCH-LOGICAL-c291t-664176d5139ca76798031001b9c26892c4f33acc7a06d90a6b9693f7095707b3
container_end_page 131
container_issue
container_start_page 117
container_title IEEE transactions on signal processing
container_volume 70
creator Sun, Mengru
Liu, Weijian
Liu, Jun
Hao, Chengpeng
description In the problem of multichannel signal detection, when it comes to the detector design criteria apart from the generalized likelihood ratio test, the traditional method is to cascade the real and imaginary parts of the parameters, and then substitute them into the real parameter statistics. This method is not succinct, and sometimes may be cumbersome and difficult to handle. Recently, a complex parameter Rao test was introduced by Kay and Zhu without the need of cascading the real and imaginary parts of the complex parameters when there is no nuisance parameter. Inspired by this work, we move a further step toward the complex parameter statistics of the Rao, Wald, gradient, and Durbin tests both with and without nuisance parameters, and derive the relationships between their real and complex parameter statistics. Moreover, for a special Fisher information matrix which often holds in practice, we derive a series of simple forms of the complex parameter statistics for the above four criteria, and discuss their application conditions in linear multivariate complex circular Gaussian distribution. Finally, several application examples are given to confirm the proposed schemes.
doi_str_mv 10.1109/TSP.2021.3132485
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9635684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9635684</ieee_id><sourcerecordid>2617489634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-664176d5139ca76798031001b9c26892c4f33acc7a06d90a6b9693f7095707b3</originalsourceid><addsrcrecordid>eNo9kM9LwzAYhoMoOKd3wUvA6zrzq0lzlE2nMHG4gnoKaZpqRpfOpAX9741sePq-w_u-PDwAXGI0xRjJm3K9mhJE8JRiSliRH4ERlgxniAl-nH6U0ywvxNspOItxgxBmTPIReJ91211rv-FKB721vQ3wRXcT-KrbegIXQdfO-n4Cta_hfAiV87C0sY-w6QJ8GtremU_tvW3h2n143cJ52jC96_w5OGl0G-3F4Y5BeX9Xzh6y5fPicXa7zAyRuM84Z1jwOsdUGi24kAWiOOFV0hBeSGJYQ6k2RmjEa4k0rySXtBFI5gKJio7B9X52F7qvIaGpTTeERBIV4ViwQnLKUgrtUyZ0MQbbqF1wWx1-FEbqz59K_tSfP3XwlypX-4qz1v7H01rOC0Z_AXpnaa8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617489634</pqid></control><display><type>article</type><title>Complex Parameter Rao, Wald, Gradient, and Durbin Tests for Multichannel Signal Detection</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Sun, Mengru ; Liu, Weijian ; Liu, Jun ; Hao, Chengpeng</creator><creatorcontrib>Sun, Mengru ; Liu, Weijian ; Liu, Jun ; Hao, Chengpeng</creatorcontrib><description>In the problem of multichannel signal detection, when it comes to the detector design criteria apart from the generalized likelihood ratio test, the traditional method is to cascade the real and imaginary parts of the parameters, and then substitute them into the real parameter statistics. This method is not succinct, and sometimes may be cumbersome and difficult to handle. Recently, a complex parameter Rao test was introduced by Kay and Zhu without the need of cascading the real and imaginary parts of the complex parameters when there is no nuisance parameter. Inspired by this work, we move a further step toward the complex parameter statistics of the Rao, Wald, gradient, and Durbin tests both with and without nuisance parameters, and derive the relationships between their real and complex parameter statistics. Moreover, for a special Fisher information matrix which often holds in practice, we derive a series of simple forms of the complex parameter statistics for the above four criteria, and discuss their application conditions in linear multivariate complex circular Gaussian distribution. Finally, several application examples are given to confirm the proposed schemes.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2021.3132485</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Complex-valued parameter ; Covariance matrices ; Design criteria ; Detectors ; Durbin test ; Fisher information ; Fisher information matrix ; Gaussian distribution ; gradient test ; Likelihood ratio ; Maximum likelihood estimation ; Normal distribution ; Nuisance ; Parameters ; Probability density function ; Rao test ; Signal detection ; Statistical tests ; Sun ; Wald test</subject><ispartof>IEEE transactions on signal processing, 2022, Vol.70, p.117-131</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-664176d5139ca76798031001b9c26892c4f33acc7a06d90a6b9693f7095707b3</citedby><cites>FETCH-LOGICAL-c291t-664176d5139ca76798031001b9c26892c4f33acc7a06d90a6b9693f7095707b3</cites><orcidid>0000-0002-7193-0622 ; 0000-0003-3603-6307 ; 0000-0001-9643-1099 ; 0000-0002-0330-8073</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9635684$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Sun, Mengru</creatorcontrib><creatorcontrib>Liu, Weijian</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Hao, Chengpeng</creatorcontrib><title>Complex Parameter Rao, Wald, Gradient, and Durbin Tests for Multichannel Signal Detection</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In the problem of multichannel signal detection, when it comes to the detector design criteria apart from the generalized likelihood ratio test, the traditional method is to cascade the real and imaginary parts of the parameters, and then substitute them into the real parameter statistics. This method is not succinct, and sometimes may be cumbersome and difficult to handle. Recently, a complex parameter Rao test was introduced by Kay and Zhu without the need of cascading the real and imaginary parts of the complex parameters when there is no nuisance parameter. Inspired by this work, we move a further step toward the complex parameter statistics of the Rao, Wald, gradient, and Durbin tests both with and without nuisance parameters, and derive the relationships between their real and complex parameter statistics. Moreover, for a special Fisher information matrix which often holds in practice, we derive a series of simple forms of the complex parameter statistics for the above four criteria, and discuss their application conditions in linear multivariate complex circular Gaussian distribution. Finally, several application examples are given to confirm the proposed schemes.</description><subject>Complex-valued parameter</subject><subject>Covariance matrices</subject><subject>Design criteria</subject><subject>Detectors</subject><subject>Durbin test</subject><subject>Fisher information</subject><subject>Fisher information matrix</subject><subject>Gaussian distribution</subject><subject>gradient test</subject><subject>Likelihood ratio</subject><subject>Maximum likelihood estimation</subject><subject>Normal distribution</subject><subject>Nuisance</subject><subject>Parameters</subject><subject>Probability density function</subject><subject>Rao test</subject><subject>Signal detection</subject><subject>Statistical tests</subject><subject>Sun</subject><subject>Wald test</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kM9LwzAYhoMoOKd3wUvA6zrzq0lzlE2nMHG4gnoKaZpqRpfOpAX9741sePq-w_u-PDwAXGI0xRjJm3K9mhJE8JRiSliRH4ERlgxniAl-nH6U0ywvxNspOItxgxBmTPIReJ91211rv-FKB721vQ3wRXcT-KrbegIXQdfO-n4Cta_hfAiV87C0sY-w6QJ8GtremU_tvW3h2n143cJ52jC96_w5OGl0G-3F4Y5BeX9Xzh6y5fPicXa7zAyRuM84Z1jwOsdUGi24kAWiOOFV0hBeSGJYQ6k2RmjEa4k0rySXtBFI5gKJio7B9X52F7qvIaGpTTeERBIV4ViwQnLKUgrtUyZ0MQbbqF1wWx1-FEbqz59K_tSfP3XwlypX-4qz1v7H01rOC0Z_AXpnaa8</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Sun, Mengru</creator><creator>Liu, Weijian</creator><creator>Liu, Jun</creator><creator>Hao, Chengpeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7193-0622</orcidid><orcidid>https://orcid.org/0000-0003-3603-6307</orcidid><orcidid>https://orcid.org/0000-0001-9643-1099</orcidid><orcidid>https://orcid.org/0000-0002-0330-8073</orcidid></search><sort><creationdate>2022</creationdate><title>Complex Parameter Rao, Wald, Gradient, and Durbin Tests for Multichannel Signal Detection</title><author>Sun, Mengru ; Liu, Weijian ; Liu, Jun ; Hao, Chengpeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-664176d5139ca76798031001b9c26892c4f33acc7a06d90a6b9693f7095707b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Complex-valued parameter</topic><topic>Covariance matrices</topic><topic>Design criteria</topic><topic>Detectors</topic><topic>Durbin test</topic><topic>Fisher information</topic><topic>Fisher information matrix</topic><topic>Gaussian distribution</topic><topic>gradient test</topic><topic>Likelihood ratio</topic><topic>Maximum likelihood estimation</topic><topic>Normal distribution</topic><topic>Nuisance</topic><topic>Parameters</topic><topic>Probability density function</topic><topic>Rao test</topic><topic>Signal detection</topic><topic>Statistical tests</topic><topic>Sun</topic><topic>Wald test</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Mengru</creatorcontrib><creatorcontrib>Liu, Weijian</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Hao, Chengpeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Mengru</au><au>Liu, Weijian</au><au>Liu, Jun</au><au>Hao, Chengpeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complex Parameter Rao, Wald, Gradient, and Durbin Tests for Multichannel Signal Detection</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2022</date><risdate>2022</risdate><volume>70</volume><spage>117</spage><epage>131</epage><pages>117-131</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In the problem of multichannel signal detection, when it comes to the detector design criteria apart from the generalized likelihood ratio test, the traditional method is to cascade the real and imaginary parts of the parameters, and then substitute them into the real parameter statistics. This method is not succinct, and sometimes may be cumbersome and difficult to handle. Recently, a complex parameter Rao test was introduced by Kay and Zhu without the need of cascading the real and imaginary parts of the complex parameters when there is no nuisance parameter. Inspired by this work, we move a further step toward the complex parameter statistics of the Rao, Wald, gradient, and Durbin tests both with and without nuisance parameters, and derive the relationships between their real and complex parameter statistics. Moreover, for a special Fisher information matrix which often holds in practice, we derive a series of simple forms of the complex parameter statistics for the above four criteria, and discuss their application conditions in linear multivariate complex circular Gaussian distribution. Finally, several application examples are given to confirm the proposed schemes.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2021.3132485</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7193-0622</orcidid><orcidid>https://orcid.org/0000-0003-3603-6307</orcidid><orcidid>https://orcid.org/0000-0001-9643-1099</orcidid><orcidid>https://orcid.org/0000-0002-0330-8073</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2022, Vol.70, p.117-131
issn 1053-587X
1941-0476
language eng
recordid cdi_ieee_primary_9635684
source IEEE Electronic Library (IEL) Journals
subjects Complex-valued parameter
Covariance matrices
Design criteria
Detectors
Durbin test
Fisher information
Fisher information matrix
Gaussian distribution
gradient test
Likelihood ratio
Maximum likelihood estimation
Normal distribution
Nuisance
Parameters
Probability density function
Rao test
Signal detection
Statistical tests
Sun
Wald test
title Complex Parameter Rao, Wald, Gradient, and Durbin Tests for Multichannel Signal Detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A41%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complex%20Parameter%20Rao,%20Wald,%20Gradient,%20and%20Durbin%20Tests%20for%20Multichannel%20Signal%20Detection&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Sun,%20Mengru&rft.date=2022&rft.volume=70&rft.spage=117&rft.epage=131&rft.pages=117-131&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2021.3132485&rft_dat=%3Cproquest_ieee_%3E2617489634%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-664176d5139ca76798031001b9c26892c4f33acc7a06d90a6b9693f7095707b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2617489634&rft_id=info:pmid/&rft_ieee_id=9635684&rfr_iscdi=true