Loading…
Cooperative Object Transportation using Gibbs Random Fields
This paper presents a novel methodology that allows a swarm of robots to perform a cooperative transportation task. Our approach consists of modeling the swarm as a Gibbs Random Field (GRF), taking advantage of this framework's locality properties. By setting appropriate potential functions, ro...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 9138 |
container_issue | |
container_start_page | 9131 |
container_title | |
container_volume | |
creator | Rezeck, Paulo Assuncao, Renato M. Chaimowicz, Luiz |
description | This paper presents a novel methodology that allows a swarm of robots to perform a cooperative transportation task. Our approach consists of modeling the swarm as a Gibbs Random Field (GRF), taking advantage of this framework's locality properties. By setting appropriate potential functions, robots can dynamically navigate, form groups, and perform co- operative transportation in a completely decentralized fashion. Moreover, these behaviors emerge from the local interactions without the need for explicit communication or coordination. To evaluate our methodology, we perform a series of simulations and proof-of-concept experiments in different scenarios. Our results show that the method is scalable, adaptable, and robust to failures and changes in the environment. |
doi_str_mv | 10.1109/IROS51168.2021.9635928 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9635928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9635928</ieee_id><sourcerecordid>9635928</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-db8cec097dd50d5ccde33e49555a8ebe34750a9edafd11a71efa92440b9a51e73</originalsourceid><addsrcrecordid>eNotj8tKw0AUQEdBsNZ-gSD5gcR75z24kmJroRCodV1mMjcypU1CJgr-vYJdHTiLA4exR4QKEdzTZle_K0RtKw4cK6eFctxesTvUWkk0KNU1m3FUogSr9S1b5HwEAATjrNMz9rzs-4FGP6VvKupwpGYq9qPv8tCP05_tu-Irp-6zWKcQcrHzXezPxSrRKeZ7dtP6U6bFhXP2sXrdL9_Kbb3eLF-2ZeIgpjIG21ADzsSoIKqmiSQESaeU8pYCCWkUeEfRtxHRG6TWOy4lBOcVkhFz9vDfTUR0GMZ09uPP4fIqfgHFt0n2</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Cooperative Object Transportation using Gibbs Random Fields</title><source>IEEE Xplore All Conference Series</source><creator>Rezeck, Paulo ; Assuncao, Renato M. ; Chaimowicz, Luiz</creator><creatorcontrib>Rezeck, Paulo ; Assuncao, Renato M. ; Chaimowicz, Luiz</creatorcontrib><description>This paper presents a novel methodology that allows a swarm of robots to perform a cooperative transportation task. Our approach consists of modeling the swarm as a Gibbs Random Field (GRF), taking advantage of this framework's locality properties. By setting appropriate potential functions, robots can dynamically navigate, form groups, and perform co- operative transportation in a completely decentralized fashion. Moreover, these behaviors emerge from the local interactions without the need for explicit communication or coordination. To evaluate our methodology, we perform a series of simulations and proof-of-concept experiments in different scenarios. Our results show that the method is scalable, adaptable, and robust to failures and changes in the environment.</description><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 1665417145</identifier><identifier>EISBN: 9781665417143</identifier><identifier>DOI: 10.1109/IROS51168.2021.9635928</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Intelligent robots ; Navigation ; Robot kinematics ; Task analysis ; Transportation</subject><ispartof>2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021, p.9131-9138</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9635928$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9635928$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rezeck, Paulo</creatorcontrib><creatorcontrib>Assuncao, Renato M.</creatorcontrib><creatorcontrib>Chaimowicz, Luiz</creatorcontrib><title>Cooperative Object Transportation using Gibbs Random Fields</title><title>2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)</title><addtitle>IROS</addtitle><description>This paper presents a novel methodology that allows a swarm of robots to perform a cooperative transportation task. Our approach consists of modeling the swarm as a Gibbs Random Field (GRF), taking advantage of this framework's locality properties. By setting appropriate potential functions, robots can dynamically navigate, form groups, and perform co- operative transportation in a completely decentralized fashion. Moreover, these behaviors emerge from the local interactions without the need for explicit communication or coordination. To evaluate our methodology, we perform a series of simulations and proof-of-concept experiments in different scenarios. Our results show that the method is scalable, adaptable, and robust to failures and changes in the environment.</description><subject>Adaptation models</subject><subject>Intelligent robots</subject><subject>Navigation</subject><subject>Robot kinematics</subject><subject>Task analysis</subject><subject>Transportation</subject><issn>2153-0866</issn><isbn>1665417145</isbn><isbn>9781665417143</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tKw0AUQEdBsNZ-gSD5gcR75z24kmJroRCodV1mMjcypU1CJgr-vYJdHTiLA4exR4QKEdzTZle_K0RtKw4cK6eFctxesTvUWkk0KNU1m3FUogSr9S1b5HwEAATjrNMz9rzs-4FGP6VvKupwpGYq9qPv8tCP05_tu-Irp-6zWKcQcrHzXezPxSrRKeZ7dtP6U6bFhXP2sXrdL9_Kbb3eLF-2ZeIgpjIG21ADzsSoIKqmiSQESaeU8pYCCWkUeEfRtxHRG6TWOy4lBOcVkhFz9vDfTUR0GMZ09uPP4fIqfgHFt0n2</recordid><startdate>20210927</startdate><enddate>20210927</enddate><creator>Rezeck, Paulo</creator><creator>Assuncao, Renato M.</creator><creator>Chaimowicz, Luiz</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20210927</creationdate><title>Cooperative Object Transportation using Gibbs Random Fields</title><author>Rezeck, Paulo ; Assuncao, Renato M. ; Chaimowicz, Luiz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-db8cec097dd50d5ccde33e49555a8ebe34750a9edafd11a71efa92440b9a51e73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation models</topic><topic>Intelligent robots</topic><topic>Navigation</topic><topic>Robot kinematics</topic><topic>Task analysis</topic><topic>Transportation</topic><toplevel>online_resources</toplevel><creatorcontrib>Rezeck, Paulo</creatorcontrib><creatorcontrib>Assuncao, Renato M.</creatorcontrib><creatorcontrib>Chaimowicz, Luiz</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rezeck, Paulo</au><au>Assuncao, Renato M.</au><au>Chaimowicz, Luiz</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Cooperative Object Transportation using Gibbs Random Fields</atitle><btitle>2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)</btitle><stitle>IROS</stitle><date>2021-09-27</date><risdate>2021</risdate><spage>9131</spage><epage>9138</epage><pages>9131-9138</pages><eissn>2153-0866</eissn><eisbn>1665417145</eisbn><eisbn>9781665417143</eisbn><abstract>This paper presents a novel methodology that allows a swarm of robots to perform a cooperative transportation task. Our approach consists of modeling the swarm as a Gibbs Random Field (GRF), taking advantage of this framework's locality properties. By setting appropriate potential functions, robots can dynamically navigate, form groups, and perform co- operative transportation in a completely decentralized fashion. Moreover, these behaviors emerge from the local interactions without the need for explicit communication or coordination. To evaluate our methodology, we perform a series of simulations and proof-of-concept experiments in different scenarios. Our results show that the method is scalable, adaptable, and robust to failures and changes in the environment.</abstract><pub>IEEE</pub><doi>10.1109/IROS51168.2021.9635928</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2153-0866 |
ispartof | 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021, p.9131-9138 |
issn | 2153-0866 |
language | eng |
recordid | cdi_ieee_primary_9635928 |
source | IEEE Xplore All Conference Series |
subjects | Adaptation models Intelligent robots Navigation Robot kinematics Task analysis Transportation |
title | Cooperative Object Transportation using Gibbs Random Fields |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T06%3A45%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Cooperative%20Object%20Transportation%20using%20Gibbs%20Random%20Fields&rft.btitle=2021%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems%20(IROS)&rft.au=Rezeck,%20Paulo&rft.date=2021-09-27&rft.spage=9131&rft.epage=9138&rft.pages=9131-9138&rft.eissn=2153-0866&rft_id=info:doi/10.1109/IROS51168.2021.9635928&rft.eisbn=1665417145&rft.eisbn_list=9781665417143&rft_dat=%3Cieee_CHZPO%3E9635928%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-db8cec097dd50d5ccde33e49555a8ebe34750a9edafd11a71efa92440b9a51e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9635928&rfr_iscdi=true |