Loading…
Automatic Data Augmentation by Upper Confidence Bounds for Deep Reinforcement Learning
In visual reinforcement learning (RL), various approaches succeeded to improve data efficiency. However, the approaches fail to show generalization capabilities if different colors or backgrounds are applied to its environment. The lack of generalization capabilities can hinder the use of RL in real...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1203 |
container_issue | |
container_start_page | 1199 |
container_title | |
container_volume | |
creator | Gil, Yoonhee Baek, Jongchan Park, Jonghyuk Han, Soohee |
description | In visual reinforcement learning (RL), various approaches succeeded to improve data efficiency. However, the approaches fail to show generalization capabilities if different colors or backgrounds are applied to its environment. The lack of generalization capabilities can hinder the use of RL in real-world environment, which contains lot of distractions and noises. In this paper, a novel automatic data augmentation method that can improve generalization capabilities of an RL agent. In the experiments, the proposed method shows better generalization capabilities than other approaches. These results provide a simple automatic data augmentation method for RL that can improve generalization capabilities. |
doi_str_mv | 10.23919/ICCAS52745.2021.9649771 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9649771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9649771</ieee_id><sourcerecordid>9649771</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-88b54a2fe5a6e5858b307f191e456237c3bef1c01b9ba9231dbcefe37df13f773</originalsourceid><addsrcrecordid>eNotkM1OwzAQhA0SEgX6BFz8Aine3TiOjyHlp1IlJKBcKztZV0bUiZL00LeniJ5G80nzHUYICWqBZME-rOq6-tBocr1AhbCwRW6NgQtxU1pLCBrBXooZFjlmZBVci_k4fiulCFWuinImvqrD1O3dFBu5dJOT1WG35zSdQJekP8pN3_Mg6y6F2HJqWD52h9SOMnSDXDL38p1jOpWG_2ZyzW5IMe3uxFVwPyPPz3krNs9Pn_Vrtn57WdXVOouoaMrK0uvcYWDtCtalLj0pE8AC57pAMg15DtAo8NY7iwStbzgwmTYABWPoVtz_eyMzb_sh7t1w3J5voF88C1NE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automatic Data Augmentation by Upper Confidence Bounds for Deep Reinforcement Learning</title><source>IEEE Xplore All Conference Series</source><creator>Gil, Yoonhee ; Baek, Jongchan ; Park, Jonghyuk ; Han, Soohee</creator><creatorcontrib>Gil, Yoonhee ; Baek, Jongchan ; Park, Jonghyuk ; Han, Soohee</creatorcontrib><description>In visual reinforcement learning (RL), various approaches succeeded to improve data efficiency. However, the approaches fail to show generalization capabilities if different colors or backgrounds are applied to its environment. The lack of generalization capabilities can hinder the use of RL in real-world environment, which contains lot of distractions and noises. In this paper, a novel automatic data augmentation method that can improve generalization capabilities of an RL agent. In the experiments, the proposed method shows better generalization capabilities than other approaches. These results provide a simple automatic data augmentation method for RL that can improve generalization capabilities.</description><identifier>EISSN: 2642-3901</identifier><identifier>EISBN: 8993215219</identifier><identifier>EISBN: 9788993215212</identifier><identifier>DOI: 10.23919/ICCAS52745.2021.9649771</identifier><language>eng</language><publisher>ICROS</publisher><subject>Automatic data augmentation ; Automation ; Colored noise ; Continuous control ; Control systems ; Image color analysis ; Reinforcement learning ; Upper confidence bounds ; Visualization</subject><ispartof>2021 21st International Conference on Control, Automation and Systems (ICCAS), 2021, p.1199-1203</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9649771$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23928,23929,25138,27923,54553,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9649771$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gil, Yoonhee</creatorcontrib><creatorcontrib>Baek, Jongchan</creatorcontrib><creatorcontrib>Park, Jonghyuk</creatorcontrib><creatorcontrib>Han, Soohee</creatorcontrib><title>Automatic Data Augmentation by Upper Confidence Bounds for Deep Reinforcement Learning</title><title>2021 21st International Conference on Control, Automation and Systems (ICCAS)</title><addtitle>ICCAS</addtitle><description>In visual reinforcement learning (RL), various approaches succeeded to improve data efficiency. However, the approaches fail to show generalization capabilities if different colors or backgrounds are applied to its environment. The lack of generalization capabilities can hinder the use of RL in real-world environment, which contains lot of distractions and noises. In this paper, a novel automatic data augmentation method that can improve generalization capabilities of an RL agent. In the experiments, the proposed method shows better generalization capabilities than other approaches. These results provide a simple automatic data augmentation method for RL that can improve generalization capabilities.</description><subject>Automatic data augmentation</subject><subject>Automation</subject><subject>Colored noise</subject><subject>Continuous control</subject><subject>Control systems</subject><subject>Image color analysis</subject><subject>Reinforcement learning</subject><subject>Upper confidence bounds</subject><subject>Visualization</subject><issn>2642-3901</issn><isbn>8993215219</isbn><isbn>9788993215212</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1OwzAQhA0SEgX6BFz8Aine3TiOjyHlp1IlJKBcKztZV0bUiZL00LeniJ5G80nzHUYICWqBZME-rOq6-tBocr1AhbCwRW6NgQtxU1pLCBrBXooZFjlmZBVci_k4fiulCFWuinImvqrD1O3dFBu5dJOT1WG35zSdQJekP8pN3_Mg6y6F2HJqWD52h9SOMnSDXDL38p1jOpWG_2ZyzW5IMe3uxFVwPyPPz3krNs9Pn_Vrtn57WdXVOouoaMrK0uvcYWDtCtalLj0pE8AC57pAMg15DtAo8NY7iwStbzgwmTYABWPoVtz_eyMzb_sh7t1w3J5voF88C1NE</recordid><startdate>20211012</startdate><enddate>20211012</enddate><creator>Gil, Yoonhee</creator><creator>Baek, Jongchan</creator><creator>Park, Jonghyuk</creator><creator>Han, Soohee</creator><general>ICROS</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20211012</creationdate><title>Automatic Data Augmentation by Upper Confidence Bounds for Deep Reinforcement Learning</title><author>Gil, Yoonhee ; Baek, Jongchan ; Park, Jonghyuk ; Han, Soohee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-88b54a2fe5a6e5858b307f191e456237c3bef1c01b9ba9231dbcefe37df13f773</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Automatic data augmentation</topic><topic>Automation</topic><topic>Colored noise</topic><topic>Continuous control</topic><topic>Control systems</topic><topic>Image color analysis</topic><topic>Reinforcement learning</topic><topic>Upper confidence bounds</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Gil, Yoonhee</creatorcontrib><creatorcontrib>Baek, Jongchan</creatorcontrib><creatorcontrib>Park, Jonghyuk</creatorcontrib><creatorcontrib>Han, Soohee</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gil, Yoonhee</au><au>Baek, Jongchan</au><au>Park, Jonghyuk</au><au>Han, Soohee</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automatic Data Augmentation by Upper Confidence Bounds for Deep Reinforcement Learning</atitle><btitle>2021 21st International Conference on Control, Automation and Systems (ICCAS)</btitle><stitle>ICCAS</stitle><date>2021-10-12</date><risdate>2021</risdate><spage>1199</spage><epage>1203</epage><pages>1199-1203</pages><eissn>2642-3901</eissn><eisbn>8993215219</eisbn><eisbn>9788993215212</eisbn><abstract>In visual reinforcement learning (RL), various approaches succeeded to improve data efficiency. However, the approaches fail to show generalization capabilities if different colors or backgrounds are applied to its environment. The lack of generalization capabilities can hinder the use of RL in real-world environment, which contains lot of distractions and noises. In this paper, a novel automatic data augmentation method that can improve generalization capabilities of an RL agent. In the experiments, the proposed method shows better generalization capabilities than other approaches. These results provide a simple automatic data augmentation method for RL that can improve generalization capabilities.</abstract><pub>ICROS</pub><doi>10.23919/ICCAS52745.2021.9649771</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2642-3901 |
ispartof | 2021 21st International Conference on Control, Automation and Systems (ICCAS), 2021, p.1199-1203 |
issn | 2642-3901 |
language | eng |
recordid | cdi_ieee_primary_9649771 |
source | IEEE Xplore All Conference Series |
subjects | Automatic data augmentation Automation Colored noise Continuous control Control systems Image color analysis Reinforcement learning Upper confidence bounds Visualization |
title | Automatic Data Augmentation by Upper Confidence Bounds for Deep Reinforcement Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T22%3A07%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automatic%20Data%20Augmentation%20by%20Upper%20Confidence%20Bounds%20for%20Deep%20Reinforcement%20Learning&rft.btitle=2021%2021st%20International%20Conference%20on%20Control,%20Automation%20and%20Systems%20(ICCAS)&rft.au=Gil,%20Yoonhee&rft.date=2021-10-12&rft.spage=1199&rft.epage=1203&rft.pages=1199-1203&rft.eissn=2642-3901&rft_id=info:doi/10.23919/ICCAS52745.2021.9649771&rft.eisbn=8993215219&rft.eisbn_list=9788993215212&rft_dat=%3Cieee_CHZPO%3E9649771%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-88b54a2fe5a6e5858b307f191e456237c3bef1c01b9ba9231dbcefe37df13f773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9649771&rfr_iscdi=true |