Loading…

Goal-Oriented Navigation with Avoiding Obstacle based on Deep Reinforcement Learning in Continuous Action Space

Obstacle avoidance problems using Deep Reinforcement Learning (DRL) are becoming possible solutions for autonomous mobile robots. In real-world situations with stationary and moving obstacles, mobile robots must be able to navigate to a goal and safely avoid collisions. This work is an extension of...

Full description

Saved in:
Bibliographic Details
Main Authors: Hien, Pham Xuan, Kim, Gon-Woo
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 11
container_issue
container_start_page 8
container_title
container_volume
creator Hien, Pham Xuan
Kim, Gon-Woo
description Obstacle avoidance problems using Deep Reinforcement Learning (DRL) are becoming possible solutions for autonomous mobile robots. In real-world situations with stationary and moving obstacles, mobile robots must be able to navigate to a goal and safely avoid collisions. This work is an extension of ongoing research on the navigation approach for a mobile robot. We show that through the proposed DRL, a goal-oriented collision avoidance model can be trained end-to-end without manual turning or supervision by a human operator. We suggest performing the obstacle avoidance algorithm of the mobile robot in both simulated environments and continuous action space of the real world. Finally, we measure and evaluate the obstacle avoidance capability through data collection of hit ratio metrics during robot execution.
doi_str_mv 10.23919/ICCAS52745.2021.9649898
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9649898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9649898</ieee_id><sourcerecordid>9649898</sourcerecordid><originalsourceid>FETCH-LOGICAL-i133t-5054ef81d2752889585a8b219ca693441c6ef4f3e8a482738dd52808dcbea0763</originalsourceid><addsrcrecordid>eNotkE1OwzAUhA0SEqX0BGx8gRT_Js_LKECpFBGJwrpynJdilNpVkhZxewJ0NYv5ZqQZQihnSyENN_frosg3WmRKLwUTfGlSZcDABbkBY6TgWnBzSWYiVSKRhvFrshiGT8aYFEyxFGYkrqLtkqr3GEZs6Is9-Z0dfQz0y48fND9F3_iwo1U9jNZ1SGs7TNzkPyAe6Cv60Mbe4X7K0xJtH35pH2gRw-jDMR4Hmru_ws3BOrwlV63tBlycdU7enx7fiuekrFbrIi8Tz6UcE820whZ4IzItAIwGbaGe1jibGqkUdym2qpUIVoHIJDTNxDFoXI2WZamck7v_Xo-I20Pv97b_3p7_kT_W_1t9</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Goal-Oriented Navigation with Avoiding Obstacle based on Deep Reinforcement Learning in Continuous Action Space</title><source>IEEE Xplore All Conference Series</source><creator>Hien, Pham Xuan ; Kim, Gon-Woo</creator><creatorcontrib>Hien, Pham Xuan ; Kim, Gon-Woo</creatorcontrib><description>Obstacle avoidance problems using Deep Reinforcement Learning (DRL) are becoming possible solutions for autonomous mobile robots. In real-world situations with stationary and moving obstacles, mobile robots must be able to navigate to a goal and safely avoid collisions. This work is an extension of ongoing research on the navigation approach for a mobile robot. We show that through the proposed DRL, a goal-oriented collision avoidance model can be trained end-to-end without manual turning or supervision by a human operator. We suggest performing the obstacle avoidance algorithm of the mobile robot in both simulated environments and continuous action space of the real world. Finally, we measure and evaluate the obstacle avoidance capability through data collection of hit ratio metrics during robot execution.</description><identifier>EISSN: 2642-3901</identifier><identifier>EISBN: 8993215219</identifier><identifier>EISBN: 9788993215212</identifier><identifier>DOI: 10.23919/ICCAS52745.2021.9649898</identifier><language>eng</language><publisher>ICROS</publisher><subject>Aerospace electronics ; deep reinforcement learning ; Measurement ; Navigation ; obstacle avoidance ; path planning ; Q-learning ; Reinforcement learning ; Robot sensing systems ; Sensors ; Turning</subject><ispartof>2021 21st International Conference on Control, Automation and Systems (ICCAS), 2021, p.8-11</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9649898$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9649898$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hien, Pham Xuan</creatorcontrib><creatorcontrib>Kim, Gon-Woo</creatorcontrib><title>Goal-Oriented Navigation with Avoiding Obstacle based on Deep Reinforcement Learning in Continuous Action Space</title><title>2021 21st International Conference on Control, Automation and Systems (ICCAS)</title><addtitle>ICCAS</addtitle><description>Obstacle avoidance problems using Deep Reinforcement Learning (DRL) are becoming possible solutions for autonomous mobile robots. In real-world situations with stationary and moving obstacles, mobile robots must be able to navigate to a goal and safely avoid collisions. This work is an extension of ongoing research on the navigation approach for a mobile robot. We show that through the proposed DRL, a goal-oriented collision avoidance model can be trained end-to-end without manual turning or supervision by a human operator. We suggest performing the obstacle avoidance algorithm of the mobile robot in both simulated environments and continuous action space of the real world. Finally, we measure and evaluate the obstacle avoidance capability through data collection of hit ratio metrics during robot execution.</description><subject>Aerospace electronics</subject><subject>deep reinforcement learning</subject><subject>Measurement</subject><subject>Navigation</subject><subject>obstacle avoidance</subject><subject>path planning</subject><subject>Q-learning</subject><subject>Reinforcement learning</subject><subject>Robot sensing systems</subject><subject>Sensors</subject><subject>Turning</subject><issn>2642-3901</issn><isbn>8993215219</isbn><isbn>9788993215212</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkE1OwzAUhA0SEqX0BGx8gRT_Js_LKECpFBGJwrpynJdilNpVkhZxewJ0NYv5ZqQZQihnSyENN_frosg3WmRKLwUTfGlSZcDABbkBY6TgWnBzSWYiVSKRhvFrshiGT8aYFEyxFGYkrqLtkqr3GEZs6Is9-Z0dfQz0y48fND9F3_iwo1U9jNZ1SGs7TNzkPyAe6Cv60Mbe4X7K0xJtH35pH2gRw-jDMR4Hmru_ws3BOrwlV63tBlycdU7enx7fiuekrFbrIi8Tz6UcE820whZ4IzItAIwGbaGe1jibGqkUdym2qpUIVoHIJDTNxDFoXI2WZamck7v_Xo-I20Pv97b_3p7_kT_W_1t9</recordid><startdate>20211012</startdate><enddate>20211012</enddate><creator>Hien, Pham Xuan</creator><creator>Kim, Gon-Woo</creator><general>ICROS</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20211012</creationdate><title>Goal-Oriented Navigation with Avoiding Obstacle based on Deep Reinforcement Learning in Continuous Action Space</title><author>Hien, Pham Xuan ; Kim, Gon-Woo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i133t-5054ef81d2752889585a8b219ca693441c6ef4f3e8a482738dd52808dcbea0763</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerospace electronics</topic><topic>deep reinforcement learning</topic><topic>Measurement</topic><topic>Navigation</topic><topic>obstacle avoidance</topic><topic>path planning</topic><topic>Q-learning</topic><topic>Reinforcement learning</topic><topic>Robot sensing systems</topic><topic>Sensors</topic><topic>Turning</topic><toplevel>online_resources</toplevel><creatorcontrib>Hien, Pham Xuan</creatorcontrib><creatorcontrib>Kim, Gon-Woo</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hien, Pham Xuan</au><au>Kim, Gon-Woo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Goal-Oriented Navigation with Avoiding Obstacle based on Deep Reinforcement Learning in Continuous Action Space</atitle><btitle>2021 21st International Conference on Control, Automation and Systems (ICCAS)</btitle><stitle>ICCAS</stitle><date>2021-10-12</date><risdate>2021</risdate><spage>8</spage><epage>11</epage><pages>8-11</pages><eissn>2642-3901</eissn><eisbn>8993215219</eisbn><eisbn>9788993215212</eisbn><abstract>Obstacle avoidance problems using Deep Reinforcement Learning (DRL) are becoming possible solutions for autonomous mobile robots. In real-world situations with stationary and moving obstacles, mobile robots must be able to navigate to a goal and safely avoid collisions. This work is an extension of ongoing research on the navigation approach for a mobile robot. We show that through the proposed DRL, a goal-oriented collision avoidance model can be trained end-to-end without manual turning or supervision by a human operator. We suggest performing the obstacle avoidance algorithm of the mobile robot in both simulated environments and continuous action space of the real world. Finally, we measure and evaluate the obstacle avoidance capability through data collection of hit ratio metrics during robot execution.</abstract><pub>ICROS</pub><doi>10.23919/ICCAS52745.2021.9649898</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2642-3901
ispartof 2021 21st International Conference on Control, Automation and Systems (ICCAS), 2021, p.8-11
issn 2642-3901
language eng
recordid cdi_ieee_primary_9649898
source IEEE Xplore All Conference Series
subjects Aerospace electronics
deep reinforcement learning
Measurement
Navigation
obstacle avoidance
path planning
Q-learning
Reinforcement learning
Robot sensing systems
Sensors
Turning
title Goal-Oriented Navigation with Avoiding Obstacle based on Deep Reinforcement Learning in Continuous Action Space
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A20%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Goal-Oriented%20Navigation%20with%20Avoiding%20Obstacle%20based%20on%20Deep%20Reinforcement%20Learning%20in%20Continuous%20Action%20Space&rft.btitle=2021%2021st%20International%20Conference%20on%20Control,%20Automation%20and%20Systems%20(ICCAS)&rft.au=Hien,%20Pham%20Xuan&rft.date=2021-10-12&rft.spage=8&rft.epage=11&rft.pages=8-11&rft.eissn=2642-3901&rft_id=info:doi/10.23919/ICCAS52745.2021.9649898&rft.eisbn=8993215219&rft.eisbn_list=9788993215212&rft_dat=%3Cieee_CHZPO%3E9649898%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i133t-5054ef81d2752889585a8b219ca693441c6ef4f3e8a482738dd52808dcbea0763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9649898&rfr_iscdi=true