Loading…

Detection of Underwater Marine Plastic Debris Using an Augmented Low Sample Size Dataset for Machine Vision System: A Deep Transfer Learning Approach

Waste in aquatic environments devastates aquatic habitats and offers a tall environmental and economical risk. Machine Vision might play a role in resolving this issue by detecting and finally eliminating debris. Using an augmented low sample size from a publicly available collection of underwater p...

Full description

Saved in:
Bibliographic Details
Main Authors: Hipolito, Japhet C., Sarraga Alon, Alvin, Amorado, Ryndel V., Fernando, Maricel Grace Z., De Chavez, Poul Isaac C.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 86
container_issue
container_start_page 82
container_title
container_volume
creator Hipolito, Japhet C.
Sarraga Alon, Alvin
Amorado, Ryndel V.
Fernando, Maricel Grace Z.
De Chavez, Poul Isaac C.
description Waste in aquatic environments devastates aquatic habitats and offers a tall environmental and economical risk. Machine Vision might play a role in resolving this issue by detecting and finally eliminating debris. Using an augmented low sample size from a publicly available collection of underwater plastic waste, this research employed a YOLOv3 deep-learning system to visually recognize debris in realistic underwater environments. The detection model has a training and validation accuracy of 98.026 % and 94.582 %, respectively, according to the study's findings, with an mAP value of 98.15%. With its effectiveness in detecting underwater plastic waste, the recommended model is suitable for a variety of machine vision systems. The system has a 100% testing accuracy, with detection per frame accuracy ranging from 60.59% to 98.89%.
doi_str_mv 10.1109/SCOReD53546.2021.9652703
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9652703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9652703</ieee_id><sourcerecordid>9652703</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-4b2d7223c384a18ab10175aa482e31aaf485ed5ca3485c87c4231d105c3c0f0c3</originalsourceid><addsrcrecordid>eNot0MtOwzAQBVCDhASUfgEb_0CKn0nKLmp4SUFFpGVbTZ1JMWoeso2q8h_8L4noalb3XN0hhHI245zN78rF8h1zLbWKZ4IJPpvHWiRMnpFrHsdaMT6X_JxciVjJSCiVXJKp91-MMSmYVKm4Ir85BjTBdi3tarpuK3QHCOjoKzjbIn3bgw_W0By3znq69rbdUWhp9r1rsA1Y0aI70BKafo-0tD9IcwjgMdC6GxHzOSof1o8N5dEHbO5pNnDY05WD1tdDV4Hg2hHO-t51Q-aGXNSw9zg93QlZPz6sFs9RsXx6WWRFZDlPQ6S2okqEkEamCngKW854ogGGZSg5QK1SjZU2MGzVJk2MEpJXnGkjDauZkRNy--9aRNz0zjbgjpvTF-UfDbJoyA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Detection of Underwater Marine Plastic Debris Using an Augmented Low Sample Size Dataset for Machine Vision System: A Deep Transfer Learning Approach</title><source>IEEE Xplore All Conference Series</source><creator>Hipolito, Japhet C. ; Sarraga Alon, Alvin ; Amorado, Ryndel V. ; Fernando, Maricel Grace Z. ; De Chavez, Poul Isaac C.</creator><creatorcontrib>Hipolito, Japhet C. ; Sarraga Alon, Alvin ; Amorado, Ryndel V. ; Fernando, Maricel Grace Z. ; De Chavez, Poul Isaac C.</creatorcontrib><description>Waste in aquatic environments devastates aquatic habitats and offers a tall environmental and economical risk. Machine Vision might play a role in resolving this issue by detecting and finally eliminating debris. Using an augmented low sample size from a publicly available collection of underwater plastic waste, this research employed a YOLOv3 deep-learning system to visually recognize debris in realistic underwater environments. The detection model has a training and validation accuracy of 98.026 % and 94.582 %, respectively, according to the study's findings, with an mAP value of 98.15%. With its effectiveness in detecting underwater plastic waste, the recommended model is suitable for a variety of machine vision systems. The system has a 100% testing accuracy, with detection per frame accuracy ranging from 60.59% to 98.89%.</description><identifier>EISSN: 2643-2447</identifier><identifier>EISBN: 1665401931</identifier><identifier>EISBN: 9781665401937</identifier><identifier>DOI: 10.1109/SCOReD53546.2021.9652703</identifier><language>eng</language><publisher>IEEE</publisher><subject>deep learning ; Distance measurement ; Economics ; Ecosystems ; Machine vision ; marine plastic waste detection ; object detection ; Plastics ; Training ; Transfer learning ; yolov3</subject><ispartof>2021 IEEE 19th Student Conference on Research and Development (SCOReD), 2021, p.82-86</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9652703$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,23909,23910,25118,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9652703$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hipolito, Japhet C.</creatorcontrib><creatorcontrib>Sarraga Alon, Alvin</creatorcontrib><creatorcontrib>Amorado, Ryndel V.</creatorcontrib><creatorcontrib>Fernando, Maricel Grace Z.</creatorcontrib><creatorcontrib>De Chavez, Poul Isaac C.</creatorcontrib><title>Detection of Underwater Marine Plastic Debris Using an Augmented Low Sample Size Dataset for Machine Vision System: A Deep Transfer Learning Approach</title><title>2021 IEEE 19th Student Conference on Research and Development (SCOReD)</title><addtitle>SCOReD</addtitle><description>Waste in aquatic environments devastates aquatic habitats and offers a tall environmental and economical risk. Machine Vision might play a role in resolving this issue by detecting and finally eliminating debris. Using an augmented low sample size from a publicly available collection of underwater plastic waste, this research employed a YOLOv3 deep-learning system to visually recognize debris in realistic underwater environments. The detection model has a training and validation accuracy of 98.026 % and 94.582 %, respectively, according to the study's findings, with an mAP value of 98.15%. With its effectiveness in detecting underwater plastic waste, the recommended model is suitable for a variety of machine vision systems. The system has a 100% testing accuracy, with detection per frame accuracy ranging from 60.59% to 98.89%.</description><subject>deep learning</subject><subject>Distance measurement</subject><subject>Economics</subject><subject>Ecosystems</subject><subject>Machine vision</subject><subject>marine plastic waste detection</subject><subject>object detection</subject><subject>Plastics</subject><subject>Training</subject><subject>Transfer learning</subject><subject>yolov3</subject><issn>2643-2447</issn><isbn>1665401931</isbn><isbn>9781665401937</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNot0MtOwzAQBVCDhASUfgEb_0CKn0nKLmp4SUFFpGVbTZ1JMWoeso2q8h_8L4noalb3XN0hhHI245zN78rF8h1zLbWKZ4IJPpvHWiRMnpFrHsdaMT6X_JxciVjJSCiVXJKp91-MMSmYVKm4Ir85BjTBdi3tarpuK3QHCOjoKzjbIn3bgw_W0By3znq69rbdUWhp9r1rsA1Y0aI70BKafo-0tD9IcwjgMdC6GxHzOSof1o8N5dEHbO5pNnDY05WD1tdDV4Hg2hHO-t51Q-aGXNSw9zg93QlZPz6sFs9RsXx6WWRFZDlPQ6S2okqEkEamCngKW854ogGGZSg5QK1SjZU2MGzVJk2MEpJXnGkjDauZkRNy--9aRNz0zjbgjpvTF-UfDbJoyA</recordid><startdate>20211123</startdate><enddate>20211123</enddate><creator>Hipolito, Japhet C.</creator><creator>Sarraga Alon, Alvin</creator><creator>Amorado, Ryndel V.</creator><creator>Fernando, Maricel Grace Z.</creator><creator>De Chavez, Poul Isaac C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20211123</creationdate><title>Detection of Underwater Marine Plastic Debris Using an Augmented Low Sample Size Dataset for Machine Vision System: A Deep Transfer Learning Approach</title><author>Hipolito, Japhet C. ; Sarraga Alon, Alvin ; Amorado, Ryndel V. ; Fernando, Maricel Grace Z. ; De Chavez, Poul Isaac C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-4b2d7223c384a18ab10175aa482e31aaf485ed5ca3485c87c4231d105c3c0f0c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>deep learning</topic><topic>Distance measurement</topic><topic>Economics</topic><topic>Ecosystems</topic><topic>Machine vision</topic><topic>marine plastic waste detection</topic><topic>object detection</topic><topic>Plastics</topic><topic>Training</topic><topic>Transfer learning</topic><topic>yolov3</topic><toplevel>online_resources</toplevel><creatorcontrib>Hipolito, Japhet C.</creatorcontrib><creatorcontrib>Sarraga Alon, Alvin</creatorcontrib><creatorcontrib>Amorado, Ryndel V.</creatorcontrib><creatorcontrib>Fernando, Maricel Grace Z.</creatorcontrib><creatorcontrib>De Chavez, Poul Isaac C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hipolito, Japhet C.</au><au>Sarraga Alon, Alvin</au><au>Amorado, Ryndel V.</au><au>Fernando, Maricel Grace Z.</au><au>De Chavez, Poul Isaac C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Detection of Underwater Marine Plastic Debris Using an Augmented Low Sample Size Dataset for Machine Vision System: A Deep Transfer Learning Approach</atitle><btitle>2021 IEEE 19th Student Conference on Research and Development (SCOReD)</btitle><stitle>SCOReD</stitle><date>2021-11-23</date><risdate>2021</risdate><spage>82</spage><epage>86</epage><pages>82-86</pages><eissn>2643-2447</eissn><eisbn>1665401931</eisbn><eisbn>9781665401937</eisbn><abstract>Waste in aquatic environments devastates aquatic habitats and offers a tall environmental and economical risk. Machine Vision might play a role in resolving this issue by detecting and finally eliminating debris. Using an augmented low sample size from a publicly available collection of underwater plastic waste, this research employed a YOLOv3 deep-learning system to visually recognize debris in realistic underwater environments. The detection model has a training and validation accuracy of 98.026 % and 94.582 %, respectively, according to the study's findings, with an mAP value of 98.15%. With its effectiveness in detecting underwater plastic waste, the recommended model is suitable for a variety of machine vision systems. The system has a 100% testing accuracy, with detection per frame accuracy ranging from 60.59% to 98.89%.</abstract><pub>IEEE</pub><doi>10.1109/SCOReD53546.2021.9652703</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2643-2447
ispartof 2021 IEEE 19th Student Conference on Research and Development (SCOReD), 2021, p.82-86
issn 2643-2447
language eng
recordid cdi_ieee_primary_9652703
source IEEE Xplore All Conference Series
subjects deep learning
Distance measurement
Economics
Ecosystems
Machine vision
marine plastic waste detection
object detection
Plastics
Training
Transfer learning
yolov3
title Detection of Underwater Marine Plastic Debris Using an Augmented Low Sample Size Dataset for Machine Vision System: A Deep Transfer Learning Approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A38%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Detection%20of%20Underwater%20Marine%20Plastic%20Debris%20Using%20an%20Augmented%20Low%20Sample%20Size%20Dataset%20for%20Machine%20Vision%20System:%20A%20Deep%20Transfer%20Learning%20Approach&rft.btitle=2021%20IEEE%2019th%20Student%20Conference%20on%20Research%20and%20Development%20(SCOReD)&rft.au=Hipolito,%20Japhet%20C.&rft.date=2021-11-23&rft.spage=82&rft.epage=86&rft.pages=82-86&rft.eissn=2643-2447&rft_id=info:doi/10.1109/SCOReD53546.2021.9652703&rft.eisbn=1665401931&rft.eisbn_list=9781665401937&rft_dat=%3Cieee_CHZPO%3E9652703%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i118t-4b2d7223c384a18ab10175aa482e31aaf485ed5ca3485c87c4231d105c3c0f0c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9652703&rfr_iscdi=true