Loading…
Detection of Underwater Marine Plastic Debris Using an Augmented Low Sample Size Dataset for Machine Vision System: A Deep Transfer Learning Approach
Waste in aquatic environments devastates aquatic habitats and offers a tall environmental and economical risk. Machine Vision might play a role in resolving this issue by detecting and finally eliminating debris. Using an augmented low sample size from a publicly available collection of underwater p...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 86 |
container_issue | |
container_start_page | 82 |
container_title | |
container_volume | |
creator | Hipolito, Japhet C. Sarraga Alon, Alvin Amorado, Ryndel V. Fernando, Maricel Grace Z. De Chavez, Poul Isaac C. |
description | Waste in aquatic environments devastates aquatic habitats and offers a tall environmental and economical risk. Machine Vision might play a role in resolving this issue by detecting and finally eliminating debris. Using an augmented low sample size from a publicly available collection of underwater plastic waste, this research employed a YOLOv3 deep-learning system to visually recognize debris in realistic underwater environments. The detection model has a training and validation accuracy of 98.026 % and 94.582 %, respectively, according to the study's findings, with an mAP value of 98.15%. With its effectiveness in detecting underwater plastic waste, the recommended model is suitable for a variety of machine vision systems. The system has a 100% testing accuracy, with detection per frame accuracy ranging from 60.59% to 98.89%. |
doi_str_mv | 10.1109/SCOReD53546.2021.9652703 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9652703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9652703</ieee_id><sourcerecordid>9652703</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-4b2d7223c384a18ab10175aa482e31aaf485ed5ca3485c87c4231d105c3c0f0c3</originalsourceid><addsrcrecordid>eNot0MtOwzAQBVCDhASUfgEb_0CKn0nKLmp4SUFFpGVbTZ1JMWoeso2q8h_8L4noalb3XN0hhHI245zN78rF8h1zLbWKZ4IJPpvHWiRMnpFrHsdaMT6X_JxciVjJSCiVXJKp91-MMSmYVKm4Ir85BjTBdi3tarpuK3QHCOjoKzjbIn3bgw_W0By3znq69rbdUWhp9r1rsA1Y0aI70BKafo-0tD9IcwjgMdC6GxHzOSof1o8N5dEHbO5pNnDY05WD1tdDV4Hg2hHO-t51Q-aGXNSw9zg93QlZPz6sFs9RsXx6WWRFZDlPQ6S2okqEkEamCngKW854ogGGZSg5QK1SjZU2MGzVJk2MEpJXnGkjDauZkRNy--9aRNz0zjbgjpvTF-UfDbJoyA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Detection of Underwater Marine Plastic Debris Using an Augmented Low Sample Size Dataset for Machine Vision System: A Deep Transfer Learning Approach</title><source>IEEE Xplore All Conference Series</source><creator>Hipolito, Japhet C. ; Sarraga Alon, Alvin ; Amorado, Ryndel V. ; Fernando, Maricel Grace Z. ; De Chavez, Poul Isaac C.</creator><creatorcontrib>Hipolito, Japhet C. ; Sarraga Alon, Alvin ; Amorado, Ryndel V. ; Fernando, Maricel Grace Z. ; De Chavez, Poul Isaac C.</creatorcontrib><description>Waste in aquatic environments devastates aquatic habitats and offers a tall environmental and economical risk. Machine Vision might play a role in resolving this issue by detecting and finally eliminating debris. Using an augmented low sample size from a publicly available collection of underwater plastic waste, this research employed a YOLOv3 deep-learning system to visually recognize debris in realistic underwater environments. The detection model has a training and validation accuracy of 98.026 % and 94.582 %, respectively, according to the study's findings, with an mAP value of 98.15%. With its effectiveness in detecting underwater plastic waste, the recommended model is suitable for a variety of machine vision systems. The system has a 100% testing accuracy, with detection per frame accuracy ranging from 60.59% to 98.89%.</description><identifier>EISSN: 2643-2447</identifier><identifier>EISBN: 1665401931</identifier><identifier>EISBN: 9781665401937</identifier><identifier>DOI: 10.1109/SCOReD53546.2021.9652703</identifier><language>eng</language><publisher>IEEE</publisher><subject>deep learning ; Distance measurement ; Economics ; Ecosystems ; Machine vision ; marine plastic waste detection ; object detection ; Plastics ; Training ; Transfer learning ; yolov3</subject><ispartof>2021 IEEE 19th Student Conference on Research and Development (SCOReD), 2021, p.82-86</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9652703$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,23909,23910,25118,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9652703$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hipolito, Japhet C.</creatorcontrib><creatorcontrib>Sarraga Alon, Alvin</creatorcontrib><creatorcontrib>Amorado, Ryndel V.</creatorcontrib><creatorcontrib>Fernando, Maricel Grace Z.</creatorcontrib><creatorcontrib>De Chavez, Poul Isaac C.</creatorcontrib><title>Detection of Underwater Marine Plastic Debris Using an Augmented Low Sample Size Dataset for Machine Vision System: A Deep Transfer Learning Approach</title><title>2021 IEEE 19th Student Conference on Research and Development (SCOReD)</title><addtitle>SCOReD</addtitle><description>Waste in aquatic environments devastates aquatic habitats and offers a tall environmental and economical risk. Machine Vision might play a role in resolving this issue by detecting and finally eliminating debris. Using an augmented low sample size from a publicly available collection of underwater plastic waste, this research employed a YOLOv3 deep-learning system to visually recognize debris in realistic underwater environments. The detection model has a training and validation accuracy of 98.026 % and 94.582 %, respectively, according to the study's findings, with an mAP value of 98.15%. With its effectiveness in detecting underwater plastic waste, the recommended model is suitable for a variety of machine vision systems. The system has a 100% testing accuracy, with detection per frame accuracy ranging from 60.59% to 98.89%.</description><subject>deep learning</subject><subject>Distance measurement</subject><subject>Economics</subject><subject>Ecosystems</subject><subject>Machine vision</subject><subject>marine plastic waste detection</subject><subject>object detection</subject><subject>Plastics</subject><subject>Training</subject><subject>Transfer learning</subject><subject>yolov3</subject><issn>2643-2447</issn><isbn>1665401931</isbn><isbn>9781665401937</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNot0MtOwzAQBVCDhASUfgEb_0CKn0nKLmp4SUFFpGVbTZ1JMWoeso2q8h_8L4noalb3XN0hhHI245zN78rF8h1zLbWKZ4IJPpvHWiRMnpFrHsdaMT6X_JxciVjJSCiVXJKp91-MMSmYVKm4Ir85BjTBdi3tarpuK3QHCOjoKzjbIn3bgw_W0By3znq69rbdUWhp9r1rsA1Y0aI70BKafo-0tD9IcwjgMdC6GxHzOSof1o8N5dEHbO5pNnDY05WD1tdDV4Hg2hHO-t51Q-aGXNSw9zg93QlZPz6sFs9RsXx6WWRFZDlPQ6S2okqEkEamCngKW854ogGGZSg5QK1SjZU2MGzVJk2MEpJXnGkjDauZkRNy--9aRNz0zjbgjpvTF-UfDbJoyA</recordid><startdate>20211123</startdate><enddate>20211123</enddate><creator>Hipolito, Japhet C.</creator><creator>Sarraga Alon, Alvin</creator><creator>Amorado, Ryndel V.</creator><creator>Fernando, Maricel Grace Z.</creator><creator>De Chavez, Poul Isaac C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20211123</creationdate><title>Detection of Underwater Marine Plastic Debris Using an Augmented Low Sample Size Dataset for Machine Vision System: A Deep Transfer Learning Approach</title><author>Hipolito, Japhet C. ; Sarraga Alon, Alvin ; Amorado, Ryndel V. ; Fernando, Maricel Grace Z. ; De Chavez, Poul Isaac C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-4b2d7223c384a18ab10175aa482e31aaf485ed5ca3485c87c4231d105c3c0f0c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>deep learning</topic><topic>Distance measurement</topic><topic>Economics</topic><topic>Ecosystems</topic><topic>Machine vision</topic><topic>marine plastic waste detection</topic><topic>object detection</topic><topic>Plastics</topic><topic>Training</topic><topic>Transfer learning</topic><topic>yolov3</topic><toplevel>online_resources</toplevel><creatorcontrib>Hipolito, Japhet C.</creatorcontrib><creatorcontrib>Sarraga Alon, Alvin</creatorcontrib><creatorcontrib>Amorado, Ryndel V.</creatorcontrib><creatorcontrib>Fernando, Maricel Grace Z.</creatorcontrib><creatorcontrib>De Chavez, Poul Isaac C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hipolito, Japhet C.</au><au>Sarraga Alon, Alvin</au><au>Amorado, Ryndel V.</au><au>Fernando, Maricel Grace Z.</au><au>De Chavez, Poul Isaac C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Detection of Underwater Marine Plastic Debris Using an Augmented Low Sample Size Dataset for Machine Vision System: A Deep Transfer Learning Approach</atitle><btitle>2021 IEEE 19th Student Conference on Research and Development (SCOReD)</btitle><stitle>SCOReD</stitle><date>2021-11-23</date><risdate>2021</risdate><spage>82</spage><epage>86</epage><pages>82-86</pages><eissn>2643-2447</eissn><eisbn>1665401931</eisbn><eisbn>9781665401937</eisbn><abstract>Waste in aquatic environments devastates aquatic habitats and offers a tall environmental and economical risk. Machine Vision might play a role in resolving this issue by detecting and finally eliminating debris. Using an augmented low sample size from a publicly available collection of underwater plastic waste, this research employed a YOLOv3 deep-learning system to visually recognize debris in realistic underwater environments. The detection model has a training and validation accuracy of 98.026 % and 94.582 %, respectively, according to the study's findings, with an mAP value of 98.15%. With its effectiveness in detecting underwater plastic waste, the recommended model is suitable for a variety of machine vision systems. The system has a 100% testing accuracy, with detection per frame accuracy ranging from 60.59% to 98.89%.</abstract><pub>IEEE</pub><doi>10.1109/SCOReD53546.2021.9652703</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2643-2447 |
ispartof | 2021 IEEE 19th Student Conference on Research and Development (SCOReD), 2021, p.82-86 |
issn | 2643-2447 |
language | eng |
recordid | cdi_ieee_primary_9652703 |
source | IEEE Xplore All Conference Series |
subjects | deep learning Distance measurement Economics Ecosystems Machine vision marine plastic waste detection object detection Plastics Training Transfer learning yolov3 |
title | Detection of Underwater Marine Plastic Debris Using an Augmented Low Sample Size Dataset for Machine Vision System: A Deep Transfer Learning Approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A38%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Detection%20of%20Underwater%20Marine%20Plastic%20Debris%20Using%20an%20Augmented%20Low%20Sample%20Size%20Dataset%20for%20Machine%20Vision%20System:%20A%20Deep%20Transfer%20Learning%20Approach&rft.btitle=2021%20IEEE%2019th%20Student%20Conference%20on%20Research%20and%20Development%20(SCOReD)&rft.au=Hipolito,%20Japhet%20C.&rft.date=2021-11-23&rft.spage=82&rft.epage=86&rft.pages=82-86&rft.eissn=2643-2447&rft_id=info:doi/10.1109/SCOReD53546.2021.9652703&rft.eisbn=1665401931&rft.eisbn_list=9781665401937&rft_dat=%3Cieee_CHZPO%3E9652703%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i118t-4b2d7223c384a18ab10175aa482e31aaf485ed5ca3485c87c4231d105c3c0f0c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9652703&rfr_iscdi=true |