Loading…
Activity Recognition Using the Joint of Wi-Fi 2.4G and 5G Frequency Bands
Human activity recognition based on Wi-Fi Channel State Information (CSI) is playing an increasingly important role in various fields such as security, medical care, etc. Most existing CSI-based activity identification methods rely on a single frequency band of Wi-Fi signals. In addition, the use of...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1270 |
container_issue | |
container_start_page | 1266 |
container_title | |
container_volume | |
creator | Yan, BeiMing Cheng, Wei Huang, GeTong Zhu, Zhong Shang Gao, Xiang |
description | Human activity recognition based on Wi-Fi Channel State Information (CSI) is playing an increasingly important role in various fields such as security, medical care, etc. Most existing CSI-based activity identification methods rely on a single frequency band of Wi-Fi signals. In addition, the use of deep learning methods for CSI-based activity recognition is still in its infancy. In this paper, we propose a scheme of activity recognition using the joint CSI of the 2.4G frequency band and the 5G frequency band (ARJF), which takes advantage of a novel convolutional neural network (CNN) to automatically extract deep features from the CSI data, to realize the detection and classification of 7 actions. Compared with the recognition result of a single frequency band, the proposed method has better recognition accuracy. |
doi_str_mv | 10.1109/ICCT52962.2021.9657966 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9657966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9657966</ieee_id><sourcerecordid>9657966</sourcerecordid><originalsourceid>FETCH-LOGICAL-i488-63291bab65fefccd7e553a72e8ce1edd0cf27e1dbe41a1101f44411dd56f32713</originalsourceid><addsrcrecordid>eNotj91KwzAYQKMgOGafQJC8QGu-_OdyFlsrA0EqXo42-TIj2mpbhb29A3d14FwcOITcACsAmLttyrJV3GlecMahcFoZp_UZyZyxoLWSgjMN52TFldG5sdxekmye3xljAqxzzK1Is_FL-k3LgT6jH_dDWtI40Jc5DXu6vCF9HNOw0DHS15RXifJC1rQbAlU1rSb8_sHBH-jd0cxX5CJ2HzNmJ65JW9235UO-faqbcrPNk7Q214I76Lteq4jR-2BQKdEZjtYjYAjMR24QQo8SuuMlRCklQAhKR8ENiDW5_s8mRNx9Temzmw6707v4A2IgTJc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Activity Recognition Using the Joint of Wi-Fi 2.4G and 5G Frequency Bands</title><source>IEEE Xplore All Conference Series</source><creator>Yan, BeiMing ; Cheng, Wei ; Huang, GeTong ; Zhu, Zhong Shang ; Gao, Xiang</creator><creatorcontrib>Yan, BeiMing ; Cheng, Wei ; Huang, GeTong ; Zhu, Zhong Shang ; Gao, Xiang</creatorcontrib><description>Human activity recognition based on Wi-Fi Channel State Information (CSI) is playing an increasingly important role in various fields such as security, medical care, etc. Most existing CSI-based activity identification methods rely on a single frequency band of Wi-Fi signals. In addition, the use of deep learning methods for CSI-based activity recognition is still in its infancy. In this paper, we propose a scheme of activity recognition using the joint CSI of the 2.4G frequency band and the 5G frequency band (ARJF), which takes advantage of a novel convolutional neural network (CNN) to automatically extract deep features from the CSI data, to realize the detection and classification of 7 actions. Compared with the recognition result of a single frequency band, the proposed method has better recognition accuracy.</description><identifier>EISSN: 2576-7828</identifier><identifier>EISBN: 9781665432061</identifier><identifier>EISBN: 1665432063</identifier><identifier>DOI: 10.1109/ICCT52962.2021.9657966</identifier><language>eng</language><publisher>IEEE</publisher><subject>2.4G ; 5G mobile communication ; Activity recognition ; Convolutional neural networks ; CSI ; Deep learning ; Feature extraction ; Medical services ; Performance evaluation</subject><ispartof>2021 IEEE 21st International Conference on Communication Technology (ICCT), 2021, p.1266-1270</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9657966$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27904,54533,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9657966$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yan, BeiMing</creatorcontrib><creatorcontrib>Cheng, Wei</creatorcontrib><creatorcontrib>Huang, GeTong</creatorcontrib><creatorcontrib>Zhu, Zhong Shang</creatorcontrib><creatorcontrib>Gao, Xiang</creatorcontrib><title>Activity Recognition Using the Joint of Wi-Fi 2.4G and 5G Frequency Bands</title><title>2021 IEEE 21st International Conference on Communication Technology (ICCT)</title><addtitle>ICCT</addtitle><description>Human activity recognition based on Wi-Fi Channel State Information (CSI) is playing an increasingly important role in various fields such as security, medical care, etc. Most existing CSI-based activity identification methods rely on a single frequency band of Wi-Fi signals. In addition, the use of deep learning methods for CSI-based activity recognition is still in its infancy. In this paper, we propose a scheme of activity recognition using the joint CSI of the 2.4G frequency band and the 5G frequency band (ARJF), which takes advantage of a novel convolutional neural network (CNN) to automatically extract deep features from the CSI data, to realize the detection and classification of 7 actions. Compared with the recognition result of a single frequency band, the proposed method has better recognition accuracy.</description><subject>2.4G</subject><subject>5G mobile communication</subject><subject>Activity recognition</subject><subject>Convolutional neural networks</subject><subject>CSI</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Medical services</subject><subject>Performance evaluation</subject><issn>2576-7828</issn><isbn>9781665432061</isbn><isbn>1665432063</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj91KwzAYQKMgOGafQJC8QGu-_OdyFlsrA0EqXo42-TIj2mpbhb29A3d14FwcOITcACsAmLttyrJV3GlecMahcFoZp_UZyZyxoLWSgjMN52TFldG5sdxekmye3xljAqxzzK1Is_FL-k3LgT6jH_dDWtI40Jc5DXu6vCF9HNOw0DHS15RXifJC1rQbAlU1rSb8_sHBH-jd0cxX5CJ2HzNmJ65JW9235UO-faqbcrPNk7Q214I76Lteq4jR-2BQKdEZjtYjYAjMR24QQo8SuuMlRCklQAhKR8ENiDW5_s8mRNx9Temzmw6707v4A2IgTJc</recordid><startdate>20211013</startdate><enddate>20211013</enddate><creator>Yan, BeiMing</creator><creator>Cheng, Wei</creator><creator>Huang, GeTong</creator><creator>Zhu, Zhong Shang</creator><creator>Gao, Xiang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20211013</creationdate><title>Activity Recognition Using the Joint of Wi-Fi 2.4G and 5G Frequency Bands</title><author>Yan, BeiMing ; Cheng, Wei ; Huang, GeTong ; Zhu, Zhong Shang ; Gao, Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i488-63291bab65fefccd7e553a72e8ce1edd0cf27e1dbe41a1101f44411dd56f32713</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>2.4G</topic><topic>5G mobile communication</topic><topic>Activity recognition</topic><topic>Convolutional neural networks</topic><topic>CSI</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Medical services</topic><topic>Performance evaluation</topic><toplevel>online_resources</toplevel><creatorcontrib>Yan, BeiMing</creatorcontrib><creatorcontrib>Cheng, Wei</creatorcontrib><creatorcontrib>Huang, GeTong</creatorcontrib><creatorcontrib>Zhu, Zhong Shang</creatorcontrib><creatorcontrib>Gao, Xiang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore / Electronic Library Online (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yan, BeiMing</au><au>Cheng, Wei</au><au>Huang, GeTong</au><au>Zhu, Zhong Shang</au><au>Gao, Xiang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Activity Recognition Using the Joint of Wi-Fi 2.4G and 5G Frequency Bands</atitle><btitle>2021 IEEE 21st International Conference on Communication Technology (ICCT)</btitle><stitle>ICCT</stitle><date>2021-10-13</date><risdate>2021</risdate><spage>1266</spage><epage>1270</epage><pages>1266-1270</pages><eissn>2576-7828</eissn><eisbn>9781665432061</eisbn><eisbn>1665432063</eisbn><abstract>Human activity recognition based on Wi-Fi Channel State Information (CSI) is playing an increasingly important role in various fields such as security, medical care, etc. Most existing CSI-based activity identification methods rely on a single frequency band of Wi-Fi signals. In addition, the use of deep learning methods for CSI-based activity recognition is still in its infancy. In this paper, we propose a scheme of activity recognition using the joint CSI of the 2.4G frequency band and the 5G frequency band (ARJF), which takes advantage of a novel convolutional neural network (CNN) to automatically extract deep features from the CSI data, to realize the detection and classification of 7 actions. Compared with the recognition result of a single frequency band, the proposed method has better recognition accuracy.</abstract><pub>IEEE</pub><doi>10.1109/ICCT52962.2021.9657966</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2576-7828 |
ispartof | 2021 IEEE 21st International Conference on Communication Technology (ICCT), 2021, p.1266-1270 |
issn | 2576-7828 |
language | eng |
recordid | cdi_ieee_primary_9657966 |
source | IEEE Xplore All Conference Series |
subjects | 2.4G 5G mobile communication Activity recognition Convolutional neural networks CSI Deep learning Feature extraction Medical services Performance evaluation |
title | Activity Recognition Using the Joint of Wi-Fi 2.4G and 5G Frequency Bands |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A02%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Activity%20Recognition%20Using%20the%20Joint%20of%20Wi-Fi%202.4G%20and%205G%20Frequency%20Bands&rft.btitle=2021%20IEEE%2021st%20International%20Conference%20on%20Communication%20Technology%20(ICCT)&rft.au=Yan,%20BeiMing&rft.date=2021-10-13&rft.spage=1266&rft.epage=1270&rft.pages=1266-1270&rft.eissn=2576-7828&rft_id=info:doi/10.1109/ICCT52962.2021.9657966&rft.eisbn=9781665432061&rft.eisbn_list=1665432063&rft_dat=%3Cieee_CHZPO%3E9657966%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i488-63291bab65fefccd7e553a72e8ce1edd0cf27e1dbe41a1101f44411dd56f32713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9657966&rfr_iscdi=true |