Loading…

Activity Recognition Using the Joint of Wi-Fi 2.4G and 5G Frequency Bands

Human activity recognition based on Wi-Fi Channel State Information (CSI) is playing an increasingly important role in various fields such as security, medical care, etc. Most existing CSI-based activity identification methods rely on a single frequency band of Wi-Fi signals. In addition, the use of...

Full description

Saved in:
Bibliographic Details
Main Authors: Yan, BeiMing, Cheng, Wei, Huang, GeTong, Zhu, Zhong Shang, Gao, Xiang
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1270
container_issue
container_start_page 1266
container_title
container_volume
creator Yan, BeiMing
Cheng, Wei
Huang, GeTong
Zhu, Zhong Shang
Gao, Xiang
description Human activity recognition based on Wi-Fi Channel State Information (CSI) is playing an increasingly important role in various fields such as security, medical care, etc. Most existing CSI-based activity identification methods rely on a single frequency band of Wi-Fi signals. In addition, the use of deep learning methods for CSI-based activity recognition is still in its infancy. In this paper, we propose a scheme of activity recognition using the joint CSI of the 2.4G frequency band and the 5G frequency band (ARJF), which takes advantage of a novel convolutional neural network (CNN) to automatically extract deep features from the CSI data, to realize the detection and classification of 7 actions. Compared with the recognition result of a single frequency band, the proposed method has better recognition accuracy.
doi_str_mv 10.1109/ICCT52962.2021.9657966
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9657966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9657966</ieee_id><sourcerecordid>9657966</sourcerecordid><originalsourceid>FETCH-LOGICAL-i488-63291bab65fefccd7e553a72e8ce1edd0cf27e1dbe41a1101f44411dd56f32713</originalsourceid><addsrcrecordid>eNotj91KwzAYQKMgOGafQJC8QGu-_OdyFlsrA0EqXo42-TIj2mpbhb29A3d14FwcOITcACsAmLttyrJV3GlecMahcFoZp_UZyZyxoLWSgjMN52TFldG5sdxekmye3xljAqxzzK1Is_FL-k3LgT6jH_dDWtI40Jc5DXu6vCF9HNOw0DHS15RXifJC1rQbAlU1rSb8_sHBH-jd0cxX5CJ2HzNmJ65JW9235UO-faqbcrPNk7Q214I76Lteq4jR-2BQKdEZjtYjYAjMR24QQo8SuuMlRCklQAhKR8ENiDW5_s8mRNx9Temzmw6707v4A2IgTJc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Activity Recognition Using the Joint of Wi-Fi 2.4G and 5G Frequency Bands</title><source>IEEE Xplore All Conference Series</source><creator>Yan, BeiMing ; Cheng, Wei ; Huang, GeTong ; Zhu, Zhong Shang ; Gao, Xiang</creator><creatorcontrib>Yan, BeiMing ; Cheng, Wei ; Huang, GeTong ; Zhu, Zhong Shang ; Gao, Xiang</creatorcontrib><description>Human activity recognition based on Wi-Fi Channel State Information (CSI) is playing an increasingly important role in various fields such as security, medical care, etc. Most existing CSI-based activity identification methods rely on a single frequency band of Wi-Fi signals. In addition, the use of deep learning methods for CSI-based activity recognition is still in its infancy. In this paper, we propose a scheme of activity recognition using the joint CSI of the 2.4G frequency band and the 5G frequency band (ARJF), which takes advantage of a novel convolutional neural network (CNN) to automatically extract deep features from the CSI data, to realize the detection and classification of 7 actions. Compared with the recognition result of a single frequency band, the proposed method has better recognition accuracy.</description><identifier>EISSN: 2576-7828</identifier><identifier>EISBN: 9781665432061</identifier><identifier>EISBN: 1665432063</identifier><identifier>DOI: 10.1109/ICCT52962.2021.9657966</identifier><language>eng</language><publisher>IEEE</publisher><subject>2.4G ; 5G mobile communication ; Activity recognition ; Convolutional neural networks ; CSI ; Deep learning ; Feature extraction ; Medical services ; Performance evaluation</subject><ispartof>2021 IEEE 21st International Conference on Communication Technology (ICCT), 2021, p.1266-1270</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9657966$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27904,54533,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9657966$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yan, BeiMing</creatorcontrib><creatorcontrib>Cheng, Wei</creatorcontrib><creatorcontrib>Huang, GeTong</creatorcontrib><creatorcontrib>Zhu, Zhong Shang</creatorcontrib><creatorcontrib>Gao, Xiang</creatorcontrib><title>Activity Recognition Using the Joint of Wi-Fi 2.4G and 5G Frequency Bands</title><title>2021 IEEE 21st International Conference on Communication Technology (ICCT)</title><addtitle>ICCT</addtitle><description>Human activity recognition based on Wi-Fi Channel State Information (CSI) is playing an increasingly important role in various fields such as security, medical care, etc. Most existing CSI-based activity identification methods rely on a single frequency band of Wi-Fi signals. In addition, the use of deep learning methods for CSI-based activity recognition is still in its infancy. In this paper, we propose a scheme of activity recognition using the joint CSI of the 2.4G frequency band and the 5G frequency band (ARJF), which takes advantage of a novel convolutional neural network (CNN) to automatically extract deep features from the CSI data, to realize the detection and classification of 7 actions. Compared with the recognition result of a single frequency band, the proposed method has better recognition accuracy.</description><subject>2.4G</subject><subject>5G mobile communication</subject><subject>Activity recognition</subject><subject>Convolutional neural networks</subject><subject>CSI</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Medical services</subject><subject>Performance evaluation</subject><issn>2576-7828</issn><isbn>9781665432061</isbn><isbn>1665432063</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj91KwzAYQKMgOGafQJC8QGu-_OdyFlsrA0EqXo42-TIj2mpbhb29A3d14FwcOITcACsAmLttyrJV3GlecMahcFoZp_UZyZyxoLWSgjMN52TFldG5sdxekmye3xljAqxzzK1Is_FL-k3LgT6jH_dDWtI40Jc5DXu6vCF9HNOw0DHS15RXifJC1rQbAlU1rSb8_sHBH-jd0cxX5CJ2HzNmJ65JW9235UO-faqbcrPNk7Q214I76Lteq4jR-2BQKdEZjtYjYAjMR24QQo8SuuMlRCklQAhKR8ENiDW5_s8mRNx9Temzmw6707v4A2IgTJc</recordid><startdate>20211013</startdate><enddate>20211013</enddate><creator>Yan, BeiMing</creator><creator>Cheng, Wei</creator><creator>Huang, GeTong</creator><creator>Zhu, Zhong Shang</creator><creator>Gao, Xiang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20211013</creationdate><title>Activity Recognition Using the Joint of Wi-Fi 2.4G and 5G Frequency Bands</title><author>Yan, BeiMing ; Cheng, Wei ; Huang, GeTong ; Zhu, Zhong Shang ; Gao, Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i488-63291bab65fefccd7e553a72e8ce1edd0cf27e1dbe41a1101f44411dd56f32713</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>2.4G</topic><topic>5G mobile communication</topic><topic>Activity recognition</topic><topic>Convolutional neural networks</topic><topic>CSI</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Medical services</topic><topic>Performance evaluation</topic><toplevel>online_resources</toplevel><creatorcontrib>Yan, BeiMing</creatorcontrib><creatorcontrib>Cheng, Wei</creatorcontrib><creatorcontrib>Huang, GeTong</creatorcontrib><creatorcontrib>Zhu, Zhong Shang</creatorcontrib><creatorcontrib>Gao, Xiang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore / Electronic Library Online (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yan, BeiMing</au><au>Cheng, Wei</au><au>Huang, GeTong</au><au>Zhu, Zhong Shang</au><au>Gao, Xiang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Activity Recognition Using the Joint of Wi-Fi 2.4G and 5G Frequency Bands</atitle><btitle>2021 IEEE 21st International Conference on Communication Technology (ICCT)</btitle><stitle>ICCT</stitle><date>2021-10-13</date><risdate>2021</risdate><spage>1266</spage><epage>1270</epage><pages>1266-1270</pages><eissn>2576-7828</eissn><eisbn>9781665432061</eisbn><eisbn>1665432063</eisbn><abstract>Human activity recognition based on Wi-Fi Channel State Information (CSI) is playing an increasingly important role in various fields such as security, medical care, etc. Most existing CSI-based activity identification methods rely on a single frequency band of Wi-Fi signals. In addition, the use of deep learning methods for CSI-based activity recognition is still in its infancy. In this paper, we propose a scheme of activity recognition using the joint CSI of the 2.4G frequency band and the 5G frequency band (ARJF), which takes advantage of a novel convolutional neural network (CNN) to automatically extract deep features from the CSI data, to realize the detection and classification of 7 actions. Compared with the recognition result of a single frequency band, the proposed method has better recognition accuracy.</abstract><pub>IEEE</pub><doi>10.1109/ICCT52962.2021.9657966</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2576-7828
ispartof 2021 IEEE 21st International Conference on Communication Technology (ICCT), 2021, p.1266-1270
issn 2576-7828
language eng
recordid cdi_ieee_primary_9657966
source IEEE Xplore All Conference Series
subjects 2.4G
5G mobile communication
Activity recognition
Convolutional neural networks
CSI
Deep learning
Feature extraction
Medical services
Performance evaluation
title Activity Recognition Using the Joint of Wi-Fi 2.4G and 5G Frequency Bands
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A02%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Activity%20Recognition%20Using%20the%20Joint%20of%20Wi-Fi%202.4G%20and%205G%20Frequency%20Bands&rft.btitle=2021%20IEEE%2021st%20International%20Conference%20on%20Communication%20Technology%20(ICCT)&rft.au=Yan,%20BeiMing&rft.date=2021-10-13&rft.spage=1266&rft.epage=1270&rft.pages=1266-1270&rft.eissn=2576-7828&rft_id=info:doi/10.1109/ICCT52962.2021.9657966&rft.eisbn=9781665432061&rft.eisbn_list=1665432063&rft_dat=%3Cieee_CHZPO%3E9657966%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i488-63291bab65fefccd7e553a72e8ce1edd0cf27e1dbe41a1101f44411dd56f32713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9657966&rfr_iscdi=true