Loading…

Data analysis methods for neuroimaging data pre-processing to decode cognitive tasks using logistic regression for BCI applications

Brain-Computer Interfaces (BCI) permit neural activity to be directly interpreted and used for applications, like therapeutic replacement of lost function (e.g. stroke) or to supplement existing function (e.g. handsfree applications). Two major challenges for BCI are accurate interpretation of neura...

Full description

Saved in:
Bibliographic Details
Main Authors: Mason, Francis, Roy, Sujit, Prasad, Girijesh
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 720
container_issue
container_start_page 715
container_title
container_volume
creator Mason, Francis
Roy, Sujit
Prasad, Girijesh
description Brain-Computer Interfaces (BCI) permit neural activity to be directly interpreted and used for applications, like therapeutic replacement of lost function (e.g. stroke) or to supplement existing function (e.g. handsfree applications). Two major challenges for BCI are accurate interpretation of neural activity and signal processing speed for real-time applications i.e. correctly decode a user's intent and the timely execution of that intent. Magnetoencephalography (MEG) has advantages over Electroencephalography (EEG) with respect to spatial and temporal resolution which could potentially allow better decoding of brain activity. High spatial and temporal resolution using MEG generates a large volume of data which must be rapidly preprocessed and classified correctly for practical realtime BCI. This paper presents a simple data processing technique to clean, normalise and reduce data dimensionality, for optimal class label decoding using a simple Logistic Regression classifier. Good decoding performance was achieved using an off-line MEG dataset, with or without data dimensionality reduction, comparable to more complex data pre-processing methods and classifiers already studied.
doi_str_mv 10.1109/SMC52423.2021.9658585
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9658585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9658585</ieee_id><sourcerecordid>9658585</sourcerecordid><originalsourceid>FETCH-LOGICAL-i250t-75ab26cebc19be23ee575810ea3a270626eee46465a81058fddf3e845029ef0a3</originalsourceid><addsrcrecordid>eNotkM1OwzAQhA0SEqX0CRCSXyDFdvyTHCH8VSriAJyrrbMJhjSObBepZ16ctFR7WOnbmZFmCbnmbM45K2_eXiolpMjnggk-L7Uqxjkhs9IUXGslpWDGnJKJUMZkXCt1Ti5i_GJMMMmLCfm9hwQUeuh20UW6wfTp60gbH2iP2-DdBlrXt7Tey4aA2RC8xRj3LHlao_U1Uuvb3iX3gzRB_I50e7h3vnUxOUsDtmHv8f0h-K5aUBiGzllII4uX5KyBLuLsuKfk4_HhvXrOlq9Pi-p2mTmhWMqMgrXQFteWl2sUOaIyquAMIQdhmBYaEaWWWsFIVdHUdZNjIRUTJTYM8im5-s91o3A1hLFb2K2OP8v_ALaQZDk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Data analysis methods for neuroimaging data pre-processing to decode cognitive tasks using logistic regression for BCI applications</title><source>IEEE Xplore All Conference Series</source><creator>Mason, Francis ; Roy, Sujit ; Prasad, Girijesh</creator><creatorcontrib>Mason, Francis ; Roy, Sujit ; Prasad, Girijesh</creatorcontrib><description>Brain-Computer Interfaces (BCI) permit neural activity to be directly interpreted and used for applications, like therapeutic replacement of lost function (e.g. stroke) or to supplement existing function (e.g. handsfree applications). Two major challenges for BCI are accurate interpretation of neural activity and signal processing speed for real-time applications i.e. correctly decode a user's intent and the timely execution of that intent. Magnetoencephalography (MEG) has advantages over Electroencephalography (EEG) with respect to spatial and temporal resolution which could potentially allow better decoding of brain activity. High spatial and temporal resolution using MEG generates a large volume of data which must be rapidly preprocessed and classified correctly for practical realtime BCI. This paper presents a simple data processing technique to clean, normalise and reduce data dimensionality, for optimal class label decoding using a simple Logistic Regression classifier. Good decoding performance was achieved using an off-line MEG dataset, with or without data dimensionality reduction, comparable to more complex data pre-processing methods and classifiers already studied.</description><identifier>EISSN: 2577-1655</identifier><identifier>EISBN: 9781665442077</identifier><identifier>EISBN: 1665442077</identifier><identifier>DOI: 10.1109/SMC52423.2021.9658585</identifier><language>eng</language><publisher>IEEE</publisher><subject>Decoding ; Electroencephalography ; Neural activity ; Neuroimaging ; Real-time systems ; Spatial resolution ; Stroke (medical condition)</subject><ispartof>2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2021, p.715-720</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9658585$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9658585$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mason, Francis</creatorcontrib><creatorcontrib>Roy, Sujit</creatorcontrib><creatorcontrib>Prasad, Girijesh</creatorcontrib><title>Data analysis methods for neuroimaging data pre-processing to decode cognitive tasks using logistic regression for BCI applications</title><title>2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC)</title><addtitle>SMC</addtitle><description>Brain-Computer Interfaces (BCI) permit neural activity to be directly interpreted and used for applications, like therapeutic replacement of lost function (e.g. stroke) or to supplement existing function (e.g. handsfree applications). Two major challenges for BCI are accurate interpretation of neural activity and signal processing speed for real-time applications i.e. correctly decode a user's intent and the timely execution of that intent. Magnetoencephalography (MEG) has advantages over Electroencephalography (EEG) with respect to spatial and temporal resolution which could potentially allow better decoding of brain activity. High spatial and temporal resolution using MEG generates a large volume of data which must be rapidly preprocessed and classified correctly for practical realtime BCI. This paper presents a simple data processing technique to clean, normalise and reduce data dimensionality, for optimal class label decoding using a simple Logistic Regression classifier. Good decoding performance was achieved using an off-line MEG dataset, with or without data dimensionality reduction, comparable to more complex data pre-processing methods and classifiers already studied.</description><subject>Decoding</subject><subject>Electroencephalography</subject><subject>Neural activity</subject><subject>Neuroimaging</subject><subject>Real-time systems</subject><subject>Spatial resolution</subject><subject>Stroke (medical condition)</subject><issn>2577-1655</issn><isbn>9781665442077</isbn><isbn>1665442077</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1OwzAQhA0SEqX0CRCSXyDFdvyTHCH8VSriAJyrrbMJhjSObBepZ16ctFR7WOnbmZFmCbnmbM45K2_eXiolpMjnggk-L7Uqxjkhs9IUXGslpWDGnJKJUMZkXCt1Ti5i_GJMMMmLCfm9hwQUeuh20UW6wfTp60gbH2iP2-DdBlrXt7Tey4aA2RC8xRj3LHlao_U1Uuvb3iX3gzRB_I50e7h3vnUxOUsDtmHv8f0h-K5aUBiGzllII4uX5KyBLuLsuKfk4_HhvXrOlq9Pi-p2mTmhWMqMgrXQFteWl2sUOaIyquAMIQdhmBYaEaWWWsFIVdHUdZNjIRUTJTYM8im5-s91o3A1hLFb2K2OP8v_ALaQZDk</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Mason, Francis</creator><creator>Roy, Sujit</creator><creator>Prasad, Girijesh</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20210101</creationdate><title>Data analysis methods for neuroimaging data pre-processing to decode cognitive tasks using logistic regression for BCI applications</title><author>Mason, Francis ; Roy, Sujit ; Prasad, Girijesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i250t-75ab26cebc19be23ee575810ea3a270626eee46465a81058fddf3e845029ef0a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Decoding</topic><topic>Electroencephalography</topic><topic>Neural activity</topic><topic>Neuroimaging</topic><topic>Real-time systems</topic><topic>Spatial resolution</topic><topic>Stroke (medical condition)</topic><toplevel>online_resources</toplevel><creatorcontrib>Mason, Francis</creatorcontrib><creatorcontrib>Roy, Sujit</creatorcontrib><creatorcontrib>Prasad, Girijesh</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mason, Francis</au><au>Roy, Sujit</au><au>Prasad, Girijesh</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Data analysis methods for neuroimaging data pre-processing to decode cognitive tasks using logistic regression for BCI applications</atitle><btitle>2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC)</btitle><stitle>SMC</stitle><date>2021-01-01</date><risdate>2021</risdate><spage>715</spage><epage>720</epage><pages>715-720</pages><eissn>2577-1655</eissn><eisbn>9781665442077</eisbn><eisbn>1665442077</eisbn><abstract>Brain-Computer Interfaces (BCI) permit neural activity to be directly interpreted and used for applications, like therapeutic replacement of lost function (e.g. stroke) or to supplement existing function (e.g. handsfree applications). Two major challenges for BCI are accurate interpretation of neural activity and signal processing speed for real-time applications i.e. correctly decode a user's intent and the timely execution of that intent. Magnetoencephalography (MEG) has advantages over Electroencephalography (EEG) with respect to spatial and temporal resolution which could potentially allow better decoding of brain activity. High spatial and temporal resolution using MEG generates a large volume of data which must be rapidly preprocessed and classified correctly for practical realtime BCI. This paper presents a simple data processing technique to clean, normalise and reduce data dimensionality, for optimal class label decoding using a simple Logistic Regression classifier. Good decoding performance was achieved using an off-line MEG dataset, with or without data dimensionality reduction, comparable to more complex data pre-processing methods and classifiers already studied.</abstract><pub>IEEE</pub><doi>10.1109/SMC52423.2021.9658585</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2577-1655
ispartof 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2021, p.715-720
issn 2577-1655
language eng
recordid cdi_ieee_primary_9658585
source IEEE Xplore All Conference Series
subjects Decoding
Electroencephalography
Neural activity
Neuroimaging
Real-time systems
Spatial resolution
Stroke (medical condition)
title Data analysis methods for neuroimaging data pre-processing to decode cognitive tasks using logistic regression for BCI applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A15%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Data%20analysis%20methods%20for%20neuroimaging%20data%20pre-processing%20to%20decode%20cognitive%20tasks%20using%20logistic%20regression%20for%20BCI%20applications&rft.btitle=2021%20IEEE%20International%20Conference%20on%20Systems,%20Man,%20and%20Cybernetics%20(SMC)&rft.au=Mason,%20Francis&rft.date=2021-01-01&rft.spage=715&rft.epage=720&rft.pages=715-720&rft.eissn=2577-1655&rft_id=info:doi/10.1109/SMC52423.2021.9658585&rft.eisbn=9781665442077&rft.eisbn_list=1665442077&rft_dat=%3Cieee_CHZPO%3E9658585%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i250t-75ab26cebc19be23ee575810ea3a270626eee46465a81058fddf3e845029ef0a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9658585&rfr_iscdi=true