Loading…
Data analysis methods for neuroimaging data pre-processing to decode cognitive tasks using logistic regression for BCI applications
Brain-Computer Interfaces (BCI) permit neural activity to be directly interpreted and used for applications, like therapeutic replacement of lost function (e.g. stroke) or to supplement existing function (e.g. handsfree applications). Two major challenges for BCI are accurate interpretation of neura...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 720 |
container_issue | |
container_start_page | 715 |
container_title | |
container_volume | |
creator | Mason, Francis Roy, Sujit Prasad, Girijesh |
description | Brain-Computer Interfaces (BCI) permit neural activity to be directly interpreted and used for applications, like therapeutic replacement of lost function (e.g. stroke) or to supplement existing function (e.g. handsfree applications). Two major challenges for BCI are accurate interpretation of neural activity and signal processing speed for real-time applications i.e. correctly decode a user's intent and the timely execution of that intent. Magnetoencephalography (MEG) has advantages over Electroencephalography (EEG) with respect to spatial and temporal resolution which could potentially allow better decoding of brain activity. High spatial and temporal resolution using MEG generates a large volume of data which must be rapidly preprocessed and classified correctly for practical realtime BCI. This paper presents a simple data processing technique to clean, normalise and reduce data dimensionality, for optimal class label decoding using a simple Logistic Regression classifier. Good decoding performance was achieved using an off-line MEG dataset, with or without data dimensionality reduction, comparable to more complex data pre-processing methods and classifiers already studied. |
doi_str_mv | 10.1109/SMC52423.2021.9658585 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9658585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9658585</ieee_id><sourcerecordid>9658585</sourcerecordid><originalsourceid>FETCH-LOGICAL-i250t-75ab26cebc19be23ee575810ea3a270626eee46465a81058fddf3e845029ef0a3</originalsourceid><addsrcrecordid>eNotkM1OwzAQhA0SEqX0CRCSXyDFdvyTHCH8VSriAJyrrbMJhjSObBepZ16ctFR7WOnbmZFmCbnmbM45K2_eXiolpMjnggk-L7Uqxjkhs9IUXGslpWDGnJKJUMZkXCt1Ti5i_GJMMMmLCfm9hwQUeuh20UW6wfTp60gbH2iP2-DdBlrXt7Tey4aA2RC8xRj3LHlao_U1Uuvb3iX3gzRB_I50e7h3vnUxOUsDtmHv8f0h-K5aUBiGzllII4uX5KyBLuLsuKfk4_HhvXrOlq9Pi-p2mTmhWMqMgrXQFteWl2sUOaIyquAMIQdhmBYaEaWWWsFIVdHUdZNjIRUTJTYM8im5-s91o3A1hLFb2K2OP8v_ALaQZDk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Data analysis methods for neuroimaging data pre-processing to decode cognitive tasks using logistic regression for BCI applications</title><source>IEEE Xplore All Conference Series</source><creator>Mason, Francis ; Roy, Sujit ; Prasad, Girijesh</creator><creatorcontrib>Mason, Francis ; Roy, Sujit ; Prasad, Girijesh</creatorcontrib><description>Brain-Computer Interfaces (BCI) permit neural activity to be directly interpreted and used for applications, like therapeutic replacement of lost function (e.g. stroke) or to supplement existing function (e.g. handsfree applications). Two major challenges for BCI are accurate interpretation of neural activity and signal processing speed for real-time applications i.e. correctly decode a user's intent and the timely execution of that intent. Magnetoencephalography (MEG) has advantages over Electroencephalography (EEG) with respect to spatial and temporal resolution which could potentially allow better decoding of brain activity. High spatial and temporal resolution using MEG generates a large volume of data which must be rapidly preprocessed and classified correctly for practical realtime BCI. This paper presents a simple data processing technique to clean, normalise and reduce data dimensionality, for optimal class label decoding using a simple Logistic Regression classifier. Good decoding performance was achieved using an off-line MEG dataset, with or without data dimensionality reduction, comparable to more complex data pre-processing methods and classifiers already studied.</description><identifier>EISSN: 2577-1655</identifier><identifier>EISBN: 9781665442077</identifier><identifier>EISBN: 1665442077</identifier><identifier>DOI: 10.1109/SMC52423.2021.9658585</identifier><language>eng</language><publisher>IEEE</publisher><subject>Decoding ; Electroencephalography ; Neural activity ; Neuroimaging ; Real-time systems ; Spatial resolution ; Stroke (medical condition)</subject><ispartof>2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2021, p.715-720</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9658585$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9658585$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mason, Francis</creatorcontrib><creatorcontrib>Roy, Sujit</creatorcontrib><creatorcontrib>Prasad, Girijesh</creatorcontrib><title>Data analysis methods for neuroimaging data pre-processing to decode cognitive tasks using logistic regression for BCI applications</title><title>2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC)</title><addtitle>SMC</addtitle><description>Brain-Computer Interfaces (BCI) permit neural activity to be directly interpreted and used for applications, like therapeutic replacement of lost function (e.g. stroke) or to supplement existing function (e.g. handsfree applications). Two major challenges for BCI are accurate interpretation of neural activity and signal processing speed for real-time applications i.e. correctly decode a user's intent and the timely execution of that intent. Magnetoencephalography (MEG) has advantages over Electroencephalography (EEG) with respect to spatial and temporal resolution which could potentially allow better decoding of brain activity. High spatial and temporal resolution using MEG generates a large volume of data which must be rapidly preprocessed and classified correctly for practical realtime BCI. This paper presents a simple data processing technique to clean, normalise and reduce data dimensionality, for optimal class label decoding using a simple Logistic Regression classifier. Good decoding performance was achieved using an off-line MEG dataset, with or without data dimensionality reduction, comparable to more complex data pre-processing methods and classifiers already studied.</description><subject>Decoding</subject><subject>Electroencephalography</subject><subject>Neural activity</subject><subject>Neuroimaging</subject><subject>Real-time systems</subject><subject>Spatial resolution</subject><subject>Stroke (medical condition)</subject><issn>2577-1655</issn><isbn>9781665442077</isbn><isbn>1665442077</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1OwzAQhA0SEqX0CRCSXyDFdvyTHCH8VSriAJyrrbMJhjSObBepZ16ctFR7WOnbmZFmCbnmbM45K2_eXiolpMjnggk-L7Uqxjkhs9IUXGslpWDGnJKJUMZkXCt1Ti5i_GJMMMmLCfm9hwQUeuh20UW6wfTp60gbH2iP2-DdBlrXt7Tey4aA2RC8xRj3LHlao_U1Uuvb3iX3gzRB_I50e7h3vnUxOUsDtmHv8f0h-K5aUBiGzllII4uX5KyBLuLsuKfk4_HhvXrOlq9Pi-p2mTmhWMqMgrXQFteWl2sUOaIyquAMIQdhmBYaEaWWWsFIVdHUdZNjIRUTJTYM8im5-s91o3A1hLFb2K2OP8v_ALaQZDk</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Mason, Francis</creator><creator>Roy, Sujit</creator><creator>Prasad, Girijesh</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20210101</creationdate><title>Data analysis methods for neuroimaging data pre-processing to decode cognitive tasks using logistic regression for BCI applications</title><author>Mason, Francis ; Roy, Sujit ; Prasad, Girijesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i250t-75ab26cebc19be23ee575810ea3a270626eee46465a81058fddf3e845029ef0a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Decoding</topic><topic>Electroencephalography</topic><topic>Neural activity</topic><topic>Neuroimaging</topic><topic>Real-time systems</topic><topic>Spatial resolution</topic><topic>Stroke (medical condition)</topic><toplevel>online_resources</toplevel><creatorcontrib>Mason, Francis</creatorcontrib><creatorcontrib>Roy, Sujit</creatorcontrib><creatorcontrib>Prasad, Girijesh</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mason, Francis</au><au>Roy, Sujit</au><au>Prasad, Girijesh</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Data analysis methods for neuroimaging data pre-processing to decode cognitive tasks using logistic regression for BCI applications</atitle><btitle>2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC)</btitle><stitle>SMC</stitle><date>2021-01-01</date><risdate>2021</risdate><spage>715</spage><epage>720</epage><pages>715-720</pages><eissn>2577-1655</eissn><eisbn>9781665442077</eisbn><eisbn>1665442077</eisbn><abstract>Brain-Computer Interfaces (BCI) permit neural activity to be directly interpreted and used for applications, like therapeutic replacement of lost function (e.g. stroke) or to supplement existing function (e.g. handsfree applications). Two major challenges for BCI are accurate interpretation of neural activity and signal processing speed for real-time applications i.e. correctly decode a user's intent and the timely execution of that intent. Magnetoencephalography (MEG) has advantages over Electroencephalography (EEG) with respect to spatial and temporal resolution which could potentially allow better decoding of brain activity. High spatial and temporal resolution using MEG generates a large volume of data which must be rapidly preprocessed and classified correctly for practical realtime BCI. This paper presents a simple data processing technique to clean, normalise and reduce data dimensionality, for optimal class label decoding using a simple Logistic Regression classifier. Good decoding performance was achieved using an off-line MEG dataset, with or without data dimensionality reduction, comparable to more complex data pre-processing methods and classifiers already studied.</abstract><pub>IEEE</pub><doi>10.1109/SMC52423.2021.9658585</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2577-1655 |
ispartof | 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2021, p.715-720 |
issn | 2577-1655 |
language | eng |
recordid | cdi_ieee_primary_9658585 |
source | IEEE Xplore All Conference Series |
subjects | Decoding Electroencephalography Neural activity Neuroimaging Real-time systems Spatial resolution Stroke (medical condition) |
title | Data analysis methods for neuroimaging data pre-processing to decode cognitive tasks using logistic regression for BCI applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A15%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Data%20analysis%20methods%20for%20neuroimaging%20data%20pre-processing%20to%20decode%20cognitive%20tasks%20using%20logistic%20regression%20for%20BCI%20applications&rft.btitle=2021%20IEEE%20International%20Conference%20on%20Systems,%20Man,%20and%20Cybernetics%20(SMC)&rft.au=Mason,%20Francis&rft.date=2021-01-01&rft.spage=715&rft.epage=720&rft.pages=715-720&rft.eissn=2577-1655&rft_id=info:doi/10.1109/SMC52423.2021.9658585&rft.eisbn=9781665442077&rft.eisbn_list=1665442077&rft_dat=%3Cieee_CHZPO%3E9658585%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i250t-75ab26cebc19be23ee575810ea3a270626eee46465a81058fddf3e845029ef0a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9658585&rfr_iscdi=true |