Loading…

Experimental Design and Control of a Smart Morphing Wing System using a Q-learning Framework

A novel control and testing platform for a smart morphing wing system is introduced to obtain optimal aerodynamic properties. This paper delves into the manufacturing process for said system, from the computer-aided modeling to the assembly, and its corresponding difficulties. The issues associated...

Full description

Saved in:
Bibliographic Details
Main Authors: Syed, Aqib A., Khamvilai, Thanakorn, Kim, Yoobin, Vamvoudakis, Kyriakos G.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c256t-1d04b65b873d23ffa6e11572bc4c53676b768d031d9b4796680f7360033363803
cites
container_end_page 359
container_issue
container_start_page 354
container_title
container_volume
creator Syed, Aqib A.
Khamvilai, Thanakorn
Kim, Yoobin
Vamvoudakis, Kyriakos G.
description A novel control and testing platform for a smart morphing wing system is introduced to obtain optimal aerodynamic properties. This paper delves into the manufacturing process for said system, from the computer-aided modeling to the assembly, and its corresponding difficulties. The issues associated with the primary rendition of the model are addressed, as well as proposed solutions to these issues. Additionally, a novel formulation is introduced, which utilizes the 3D printed airfoil model for Computational Fluid Dynamics (CFD) analysis and reinforcement learning. In particular, image processing techniques and algorithms are employed to obtain an outline for the various morphed configurations, which are converted into airfoil coordinates and analyzed using a CFD tool, before being imported into a Q-learning algorithm.
doi_str_mv 10.1109/CCTA48906.2021.9658986
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9658986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9658986</ieee_id><sourcerecordid>9658986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-1d04b65b873d23ffa6e11572bc4c53676b768d031d9b4796680f7360033363803</originalsourceid><addsrcrecordid>eNotkN1Kw0AUhFdBsNQ8gSD7Aqln92zO7l6W2KpQEWnFG6Fskk2N5o9NRPv2ttibGeZmmG8YuxEwEwLsbZpu5spYoJkEKWaWEmMNnbHIaiOIEoWkUJ2zidRkYtAaLlk0DJ8AgBLQajlh74vf3oeq8e3oan7nh2rXctcWPO3aMXQ170ru-LpxYeRPXeg_qnbH346y3g-jb_j3cAyOv8S1d6E9hmVwjf_pwtcVuyhdPfjo5FP2ulxs0od49Xz_mM5XcS4TGmNRgMooyYzGQmJZOvJCJFpmucoTJE3ZYX8BKAqbKW2JDJQa6UCBSGgAp-z6v7fy3m_7A44L--3pD_wDKh5Tbg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Experimental Design and Control of a Smart Morphing Wing System using a Q-learning Framework</title><source>IEEE Xplore All Conference Series</source><creator>Syed, Aqib A. ; Khamvilai, Thanakorn ; Kim, Yoobin ; Vamvoudakis, Kyriakos G.</creator><creatorcontrib>Syed, Aqib A. ; Khamvilai, Thanakorn ; Kim, Yoobin ; Vamvoudakis, Kyriakos G.</creatorcontrib><description>A novel control and testing platform for a smart morphing wing system is introduced to obtain optimal aerodynamic properties. This paper delves into the manufacturing process for said system, from the computer-aided modeling to the assembly, and its corresponding difficulties. The issues associated with the primary rendition of the model are addressed, as well as proposed solutions to these issues. Additionally, a novel formulation is introduced, which utilizes the 3D printed airfoil model for Computational Fluid Dynamics (CFD) analysis and reinforcement learning. In particular, image processing techniques and algorithms are employed to obtain an outline for the various morphed configurations, which are converted into airfoil coordinates and analyzed using a CFD tool, before being imported into a Q-learning algorithm.</description><identifier>EISSN: 2768-0770</identifier><identifier>EISBN: 9781665436434</identifier><identifier>EISBN: 1665436433</identifier><identifier>DOI: 10.1109/CCTA48906.2021.9658986</identifier><language>eng</language><publisher>IEEE</publisher><subject>Atmospheric modeling ; Computational fluid dynamics ; Computational modeling ; Heuristic algorithms ; Q-learning ; Solid modeling ; Three-dimensional displays</subject><ispartof>2021 IEEE Conference on Control Technology and Applications (CCTA), 2021, p.354-359</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c256t-1d04b65b873d23ffa6e11572bc4c53676b768d031d9b4796680f7360033363803</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9658986$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9658986$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Syed, Aqib A.</creatorcontrib><creatorcontrib>Khamvilai, Thanakorn</creatorcontrib><creatorcontrib>Kim, Yoobin</creatorcontrib><creatorcontrib>Vamvoudakis, Kyriakos G.</creatorcontrib><title>Experimental Design and Control of a Smart Morphing Wing System using a Q-learning Framework</title><title>2021 IEEE Conference on Control Technology and Applications (CCTA)</title><addtitle>CCTA</addtitle><description>A novel control and testing platform for a smart morphing wing system is introduced to obtain optimal aerodynamic properties. This paper delves into the manufacturing process for said system, from the computer-aided modeling to the assembly, and its corresponding difficulties. The issues associated with the primary rendition of the model are addressed, as well as proposed solutions to these issues. Additionally, a novel formulation is introduced, which utilizes the 3D printed airfoil model for Computational Fluid Dynamics (CFD) analysis and reinforcement learning. In particular, image processing techniques and algorithms are employed to obtain an outline for the various morphed configurations, which are converted into airfoil coordinates and analyzed using a CFD tool, before being imported into a Q-learning algorithm.</description><subject>Atmospheric modeling</subject><subject>Computational fluid dynamics</subject><subject>Computational modeling</subject><subject>Heuristic algorithms</subject><subject>Q-learning</subject><subject>Solid modeling</subject><subject>Three-dimensional displays</subject><issn>2768-0770</issn><isbn>9781665436434</isbn><isbn>1665436433</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkN1Kw0AUhFdBsNQ8gSD7Aqln92zO7l6W2KpQEWnFG6Fskk2N5o9NRPv2ttibGeZmmG8YuxEwEwLsbZpu5spYoJkEKWaWEmMNnbHIaiOIEoWkUJ2zidRkYtAaLlk0DJ8AgBLQajlh74vf3oeq8e3oan7nh2rXctcWPO3aMXQ170ru-LpxYeRPXeg_qnbH346y3g-jb_j3cAyOv8S1d6E9hmVwjf_pwtcVuyhdPfjo5FP2ulxs0od49Xz_mM5XcS4TGmNRgMooyYzGQmJZOvJCJFpmucoTJE3ZYX8BKAqbKW2JDJQa6UCBSGgAp-z6v7fy3m_7A44L--3pD_wDKh5Tbg</recordid><startdate>20210809</startdate><enddate>20210809</enddate><creator>Syed, Aqib A.</creator><creator>Khamvilai, Thanakorn</creator><creator>Kim, Yoobin</creator><creator>Vamvoudakis, Kyriakos G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20210809</creationdate><title>Experimental Design and Control of a Smart Morphing Wing System using a Q-learning Framework</title><author>Syed, Aqib A. ; Khamvilai, Thanakorn ; Kim, Yoobin ; Vamvoudakis, Kyriakos G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-1d04b65b873d23ffa6e11572bc4c53676b768d031d9b4796680f7360033363803</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atmospheric modeling</topic><topic>Computational fluid dynamics</topic><topic>Computational modeling</topic><topic>Heuristic algorithms</topic><topic>Q-learning</topic><topic>Solid modeling</topic><topic>Three-dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Syed, Aqib A.</creatorcontrib><creatorcontrib>Khamvilai, Thanakorn</creatorcontrib><creatorcontrib>Kim, Yoobin</creatorcontrib><creatorcontrib>Vamvoudakis, Kyriakos G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Syed, Aqib A.</au><au>Khamvilai, Thanakorn</au><au>Kim, Yoobin</au><au>Vamvoudakis, Kyriakos G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Experimental Design and Control of a Smart Morphing Wing System using a Q-learning Framework</atitle><btitle>2021 IEEE Conference on Control Technology and Applications (CCTA)</btitle><stitle>CCTA</stitle><date>2021-08-09</date><risdate>2021</risdate><spage>354</spage><epage>359</epage><pages>354-359</pages><eissn>2768-0770</eissn><eisbn>9781665436434</eisbn><eisbn>1665436433</eisbn><abstract>A novel control and testing platform for a smart morphing wing system is introduced to obtain optimal aerodynamic properties. This paper delves into the manufacturing process for said system, from the computer-aided modeling to the assembly, and its corresponding difficulties. The issues associated with the primary rendition of the model are addressed, as well as proposed solutions to these issues. Additionally, a novel formulation is introduced, which utilizes the 3D printed airfoil model for Computational Fluid Dynamics (CFD) analysis and reinforcement learning. In particular, image processing techniques and algorithms are employed to obtain an outline for the various morphed configurations, which are converted into airfoil coordinates and analyzed using a CFD tool, before being imported into a Q-learning algorithm.</abstract><pub>IEEE</pub><doi>10.1109/CCTA48906.2021.9658986</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2768-0770
ispartof 2021 IEEE Conference on Control Technology and Applications (CCTA), 2021, p.354-359
issn 2768-0770
language eng
recordid cdi_ieee_primary_9658986
source IEEE Xplore All Conference Series
subjects Atmospheric modeling
Computational fluid dynamics
Computational modeling
Heuristic algorithms
Q-learning
Solid modeling
Three-dimensional displays
title Experimental Design and Control of a Smart Morphing Wing System using a Q-learning Framework
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A58%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Experimental%20Design%20and%20Control%20of%20a%20Smart%20Morphing%20Wing%20System%20using%20a%20Q-learning%20Framework&rft.btitle=2021%20IEEE%20Conference%20on%20Control%20Technology%20and%20Applications%20(CCTA)&rft.au=Syed,%20Aqib%20A.&rft.date=2021-08-09&rft.spage=354&rft.epage=359&rft.pages=354-359&rft.eissn=2768-0770&rft_id=info:doi/10.1109/CCTA48906.2021.9658986&rft.eisbn=9781665436434&rft.eisbn_list=1665436433&rft_dat=%3Cieee_CHZPO%3E9658986%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c256t-1d04b65b873d23ffa6e11572bc4c53676b768d031d9b4796680f7360033363803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9658986&rfr_iscdi=true