Loading…
Experimental Design and Control of a Smart Morphing Wing System using a Q-learning Framework
A novel control and testing platform for a smart morphing wing system is introduced to obtain optimal aerodynamic properties. This paper delves into the manufacturing process for said system, from the computer-aided modeling to the assembly, and its corresponding difficulties. The issues associated...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c256t-1d04b65b873d23ffa6e11572bc4c53676b768d031d9b4796680f7360033363803 |
---|---|
cites | |
container_end_page | 359 |
container_issue | |
container_start_page | 354 |
container_title | |
container_volume | |
creator | Syed, Aqib A. Khamvilai, Thanakorn Kim, Yoobin Vamvoudakis, Kyriakos G. |
description | A novel control and testing platform for a smart morphing wing system is introduced to obtain optimal aerodynamic properties. This paper delves into the manufacturing process for said system, from the computer-aided modeling to the assembly, and its corresponding difficulties. The issues associated with the primary rendition of the model are addressed, as well as proposed solutions to these issues. Additionally, a novel formulation is introduced, which utilizes the 3D printed airfoil model for Computational Fluid Dynamics (CFD) analysis and reinforcement learning. In particular, image processing techniques and algorithms are employed to obtain an outline for the various morphed configurations, which are converted into airfoil coordinates and analyzed using a CFD tool, before being imported into a Q-learning algorithm. |
doi_str_mv | 10.1109/CCTA48906.2021.9658986 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9658986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9658986</ieee_id><sourcerecordid>9658986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-1d04b65b873d23ffa6e11572bc4c53676b768d031d9b4796680f7360033363803</originalsourceid><addsrcrecordid>eNotkN1Kw0AUhFdBsNQ8gSD7Aqln92zO7l6W2KpQEWnFG6Fskk2N5o9NRPv2ttibGeZmmG8YuxEwEwLsbZpu5spYoJkEKWaWEmMNnbHIaiOIEoWkUJ2zidRkYtAaLlk0DJ8AgBLQajlh74vf3oeq8e3oan7nh2rXctcWPO3aMXQ170ru-LpxYeRPXeg_qnbH346y3g-jb_j3cAyOv8S1d6E9hmVwjf_pwtcVuyhdPfjo5FP2ulxs0od49Xz_mM5XcS4TGmNRgMooyYzGQmJZOvJCJFpmucoTJE3ZYX8BKAqbKW2JDJQa6UCBSGgAp-z6v7fy3m_7A44L--3pD_wDKh5Tbg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Experimental Design and Control of a Smart Morphing Wing System using a Q-learning Framework</title><source>IEEE Xplore All Conference Series</source><creator>Syed, Aqib A. ; Khamvilai, Thanakorn ; Kim, Yoobin ; Vamvoudakis, Kyriakos G.</creator><creatorcontrib>Syed, Aqib A. ; Khamvilai, Thanakorn ; Kim, Yoobin ; Vamvoudakis, Kyriakos G.</creatorcontrib><description>A novel control and testing platform for a smart morphing wing system is introduced to obtain optimal aerodynamic properties. This paper delves into the manufacturing process for said system, from the computer-aided modeling to the assembly, and its corresponding difficulties. The issues associated with the primary rendition of the model are addressed, as well as proposed solutions to these issues. Additionally, a novel formulation is introduced, which utilizes the 3D printed airfoil model for Computational Fluid Dynamics (CFD) analysis and reinforcement learning. In particular, image processing techniques and algorithms are employed to obtain an outline for the various morphed configurations, which are converted into airfoil coordinates and analyzed using a CFD tool, before being imported into a Q-learning algorithm.</description><identifier>EISSN: 2768-0770</identifier><identifier>EISBN: 9781665436434</identifier><identifier>EISBN: 1665436433</identifier><identifier>DOI: 10.1109/CCTA48906.2021.9658986</identifier><language>eng</language><publisher>IEEE</publisher><subject>Atmospheric modeling ; Computational fluid dynamics ; Computational modeling ; Heuristic algorithms ; Q-learning ; Solid modeling ; Three-dimensional displays</subject><ispartof>2021 IEEE Conference on Control Technology and Applications (CCTA), 2021, p.354-359</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c256t-1d04b65b873d23ffa6e11572bc4c53676b768d031d9b4796680f7360033363803</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9658986$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9658986$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Syed, Aqib A.</creatorcontrib><creatorcontrib>Khamvilai, Thanakorn</creatorcontrib><creatorcontrib>Kim, Yoobin</creatorcontrib><creatorcontrib>Vamvoudakis, Kyriakos G.</creatorcontrib><title>Experimental Design and Control of a Smart Morphing Wing System using a Q-learning Framework</title><title>2021 IEEE Conference on Control Technology and Applications (CCTA)</title><addtitle>CCTA</addtitle><description>A novel control and testing platform for a smart morphing wing system is introduced to obtain optimal aerodynamic properties. This paper delves into the manufacturing process for said system, from the computer-aided modeling to the assembly, and its corresponding difficulties. The issues associated with the primary rendition of the model are addressed, as well as proposed solutions to these issues. Additionally, a novel formulation is introduced, which utilizes the 3D printed airfoil model for Computational Fluid Dynamics (CFD) analysis and reinforcement learning. In particular, image processing techniques and algorithms are employed to obtain an outline for the various morphed configurations, which are converted into airfoil coordinates and analyzed using a CFD tool, before being imported into a Q-learning algorithm.</description><subject>Atmospheric modeling</subject><subject>Computational fluid dynamics</subject><subject>Computational modeling</subject><subject>Heuristic algorithms</subject><subject>Q-learning</subject><subject>Solid modeling</subject><subject>Three-dimensional displays</subject><issn>2768-0770</issn><isbn>9781665436434</isbn><isbn>1665436433</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkN1Kw0AUhFdBsNQ8gSD7Aqln92zO7l6W2KpQEWnFG6Fskk2N5o9NRPv2ttibGeZmmG8YuxEwEwLsbZpu5spYoJkEKWaWEmMNnbHIaiOIEoWkUJ2zidRkYtAaLlk0DJ8AgBLQajlh74vf3oeq8e3oan7nh2rXctcWPO3aMXQ170ru-LpxYeRPXeg_qnbH346y3g-jb_j3cAyOv8S1d6E9hmVwjf_pwtcVuyhdPfjo5FP2ulxs0od49Xz_mM5XcS4TGmNRgMooyYzGQmJZOvJCJFpmucoTJE3ZYX8BKAqbKW2JDJQa6UCBSGgAp-z6v7fy3m_7A44L--3pD_wDKh5Tbg</recordid><startdate>20210809</startdate><enddate>20210809</enddate><creator>Syed, Aqib A.</creator><creator>Khamvilai, Thanakorn</creator><creator>Kim, Yoobin</creator><creator>Vamvoudakis, Kyriakos G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20210809</creationdate><title>Experimental Design and Control of a Smart Morphing Wing System using a Q-learning Framework</title><author>Syed, Aqib A. ; Khamvilai, Thanakorn ; Kim, Yoobin ; Vamvoudakis, Kyriakos G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-1d04b65b873d23ffa6e11572bc4c53676b768d031d9b4796680f7360033363803</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atmospheric modeling</topic><topic>Computational fluid dynamics</topic><topic>Computational modeling</topic><topic>Heuristic algorithms</topic><topic>Q-learning</topic><topic>Solid modeling</topic><topic>Three-dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Syed, Aqib A.</creatorcontrib><creatorcontrib>Khamvilai, Thanakorn</creatorcontrib><creatorcontrib>Kim, Yoobin</creatorcontrib><creatorcontrib>Vamvoudakis, Kyriakos G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Syed, Aqib A.</au><au>Khamvilai, Thanakorn</au><au>Kim, Yoobin</au><au>Vamvoudakis, Kyriakos G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Experimental Design and Control of a Smart Morphing Wing System using a Q-learning Framework</atitle><btitle>2021 IEEE Conference on Control Technology and Applications (CCTA)</btitle><stitle>CCTA</stitle><date>2021-08-09</date><risdate>2021</risdate><spage>354</spage><epage>359</epage><pages>354-359</pages><eissn>2768-0770</eissn><eisbn>9781665436434</eisbn><eisbn>1665436433</eisbn><abstract>A novel control and testing platform for a smart morphing wing system is introduced to obtain optimal aerodynamic properties. This paper delves into the manufacturing process for said system, from the computer-aided modeling to the assembly, and its corresponding difficulties. The issues associated with the primary rendition of the model are addressed, as well as proposed solutions to these issues. Additionally, a novel formulation is introduced, which utilizes the 3D printed airfoil model for Computational Fluid Dynamics (CFD) analysis and reinforcement learning. In particular, image processing techniques and algorithms are employed to obtain an outline for the various morphed configurations, which are converted into airfoil coordinates and analyzed using a CFD tool, before being imported into a Q-learning algorithm.</abstract><pub>IEEE</pub><doi>10.1109/CCTA48906.2021.9658986</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2768-0770 |
ispartof | 2021 IEEE Conference on Control Technology and Applications (CCTA), 2021, p.354-359 |
issn | 2768-0770 |
language | eng |
recordid | cdi_ieee_primary_9658986 |
source | IEEE Xplore All Conference Series |
subjects | Atmospheric modeling Computational fluid dynamics Computational modeling Heuristic algorithms Q-learning Solid modeling Three-dimensional displays |
title | Experimental Design and Control of a Smart Morphing Wing System using a Q-learning Framework |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A58%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Experimental%20Design%20and%20Control%20of%20a%20Smart%20Morphing%20Wing%20System%20using%20a%20Q-learning%20Framework&rft.btitle=2021%20IEEE%20Conference%20on%20Control%20Technology%20and%20Applications%20(CCTA)&rft.au=Syed,%20Aqib%20A.&rft.date=2021-08-09&rft.spage=354&rft.epage=359&rft.pages=354-359&rft.eissn=2768-0770&rft_id=info:doi/10.1109/CCTA48906.2021.9658986&rft.eisbn=9781665436434&rft.eisbn_list=1665436433&rft_dat=%3Cieee_CHZPO%3E9658986%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c256t-1d04b65b873d23ffa6e11572bc4c53676b768d031d9b4796680f7360033363803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9658986&rfr_iscdi=true |