Loading…

Accurate Indoor Positioning Based on Learned Absolute and Relative Models

To improve the accuracy of indoor positioning systems it can be useful to combine different types of sensor data. This paper describes deep learning methods both for estimating absolute positions and for performing pedestrian dead reckoning, and then how to combine the resulting estimates using weig...

Full description

Saved in:
Bibliographic Details
Main Authors: Kjellson, Christoffer, Larsson, Martin, Astrom, Kalle, Oskarsson, Magnus
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Kjellson, Christoffer
Larsson, Martin
Astrom, Kalle
Oskarsson, Magnus
description To improve the accuracy of indoor positioning systems it can be useful to combine different types of sensor data. This paper describes deep learning methods both for estimating absolute positions and for performing pedestrian dead reckoning, and then how to combine the resulting estimates using weighted least squares optimization. The positioning model is based on a custom neural network which uses measurements of received signal strength indication from one instant of time as input. The model for estimating relative positions is on the other hand based on inertial sensors, the accelerometer, magnetometer and gyroscope. The position estimates are then combined using a least squares approach with weights based on the standard deviations of errors in predictions from the used models.
doi_str_mv 10.1109/IPIN51156.2021.9662534
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9662534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9662534</ieee_id><sourcerecordid>9662534</sourcerecordid><originalsourceid>FETCH-LOGICAL-i272t-9a36508e003c91e40fbf75511a2be5787b979d067f09877a298de3c1f83f7a123</originalsourceid><addsrcrecordid>eNotj9FKwzAUhqMgOOeeQJC8QOs5SZM0l3XoLFQdouDdSNtTidREmk7w7R24q--_-PjhY-waIUcEe1Nv6yeFqHQuQGButRZKFifsArVWBRQgzClbiMJgZtG8n7NVSp8AgBpRQ7lgddV1-8nNxOvQxzjxbUx-9jH48MFvXaKex8AbclM4zKpNcdwfZBd6_kKjm_0P8cfY05gu2dngxkSrI5fs7f7udf2QNc-bel01mRdGzJl1UisoCUB2FqmAoR2MOjQ40ZIypWmtsT1oM4AtjXHClj3JDodSDsahkEt29f_riWj3PfkvN_3ujuXyD6bcTMA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Accurate Indoor Positioning Based on Learned Absolute and Relative Models</title><source>IEEE Xplore All Conference Series</source><creator>Kjellson, Christoffer ; Larsson, Martin ; Astrom, Kalle ; Oskarsson, Magnus</creator><creatorcontrib>Kjellson, Christoffer ; Larsson, Martin ; Astrom, Kalle ; Oskarsson, Magnus</creatorcontrib><description>To improve the accuracy of indoor positioning systems it can be useful to combine different types of sensor data. This paper describes deep learning methods both for estimating absolute positions and for performing pedestrian dead reckoning, and then how to combine the resulting estimates using weighted least squares optimization. The positioning model is based on a custom neural network which uses measurements of received signal strength indication from one instant of time as input. The model for estimating relative positions is on the other hand based on inertial sensors, the accelerometer, magnetometer and gyroscope. The position estimates are then combined using a least squares approach with weights based on the standard deviations of errors in predictions from the used models.</description><identifier>EISSN: 2471-917X</identifier><identifier>EISBN: 1665404027</identifier><identifier>EISBN: 9781665404020</identifier><identifier>DOI: 10.1109/IPIN51156.2021.9662534</identifier><language>eng</language><publisher>IEEE</publisher><subject>Buildings ; Deep learning ; fingerprinting ; indoor positioning ; Neural networks ; Optimization ; PDR ; radio beacons ; sensor fusion ; smartphone ; Task analysis ; Time measurement ; Training</subject><ispartof>2021 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 2021, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9662534$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,23908,23909,25117,27901,54529,54906</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9662534$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kjellson, Christoffer</creatorcontrib><creatorcontrib>Larsson, Martin</creatorcontrib><creatorcontrib>Astrom, Kalle</creatorcontrib><creatorcontrib>Oskarsson, Magnus</creatorcontrib><title>Accurate Indoor Positioning Based on Learned Absolute and Relative Models</title><title>2021 International Conference on Indoor Positioning and Indoor Navigation (IPIN)</title><addtitle>IPIN</addtitle><description>To improve the accuracy of indoor positioning systems it can be useful to combine different types of sensor data. This paper describes deep learning methods both for estimating absolute positions and for performing pedestrian dead reckoning, and then how to combine the resulting estimates using weighted least squares optimization. The positioning model is based on a custom neural network which uses measurements of received signal strength indication from one instant of time as input. The model for estimating relative positions is on the other hand based on inertial sensors, the accelerometer, magnetometer and gyroscope. The position estimates are then combined using a least squares approach with weights based on the standard deviations of errors in predictions from the used models.</description><subject>Buildings</subject><subject>Deep learning</subject><subject>fingerprinting</subject><subject>indoor positioning</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>PDR</subject><subject>radio beacons</subject><subject>sensor fusion</subject><subject>smartphone</subject><subject>Task analysis</subject><subject>Time measurement</subject><subject>Training</subject><issn>2471-917X</issn><isbn>1665404027</isbn><isbn>9781665404020</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj9FKwzAUhqMgOOeeQJC8QOs5SZM0l3XoLFQdouDdSNtTidREmk7w7R24q--_-PjhY-waIUcEe1Nv6yeFqHQuQGButRZKFifsArVWBRQgzClbiMJgZtG8n7NVSp8AgBpRQ7lgddV1-8nNxOvQxzjxbUx-9jH48MFvXaKex8AbclM4zKpNcdwfZBd6_kKjm_0P8cfY05gu2dngxkSrI5fs7f7udf2QNc-bel01mRdGzJl1UisoCUB2FqmAoR2MOjQ40ZIypWmtsT1oM4AtjXHClj3JDodSDsahkEt29f_riWj3PfkvN_3ujuXyD6bcTMA</recordid><startdate>20211129</startdate><enddate>20211129</enddate><creator>Kjellson, Christoffer</creator><creator>Larsson, Martin</creator><creator>Astrom, Kalle</creator><creator>Oskarsson, Magnus</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20211129</creationdate><title>Accurate Indoor Positioning Based on Learned Absolute and Relative Models</title><author>Kjellson, Christoffer ; Larsson, Martin ; Astrom, Kalle ; Oskarsson, Magnus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i272t-9a36508e003c91e40fbf75511a2be5787b979d067f09877a298de3c1f83f7a123</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Buildings</topic><topic>Deep learning</topic><topic>fingerprinting</topic><topic>indoor positioning</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>PDR</topic><topic>radio beacons</topic><topic>sensor fusion</topic><topic>smartphone</topic><topic>Task analysis</topic><topic>Time measurement</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Kjellson, Christoffer</creatorcontrib><creatorcontrib>Larsson, Martin</creatorcontrib><creatorcontrib>Astrom, Kalle</creatorcontrib><creatorcontrib>Oskarsson, Magnus</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kjellson, Christoffer</au><au>Larsson, Martin</au><au>Astrom, Kalle</au><au>Oskarsson, Magnus</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Accurate Indoor Positioning Based on Learned Absolute and Relative Models</atitle><btitle>2021 International Conference on Indoor Positioning and Indoor Navigation (IPIN)</btitle><stitle>IPIN</stitle><date>2021-11-29</date><risdate>2021</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><eissn>2471-917X</eissn><eisbn>1665404027</eisbn><eisbn>9781665404020</eisbn><abstract>To improve the accuracy of indoor positioning systems it can be useful to combine different types of sensor data. This paper describes deep learning methods both for estimating absolute positions and for performing pedestrian dead reckoning, and then how to combine the resulting estimates using weighted least squares optimization. The positioning model is based on a custom neural network which uses measurements of received signal strength indication from one instant of time as input. The model for estimating relative positions is on the other hand based on inertial sensors, the accelerometer, magnetometer and gyroscope. The position estimates are then combined using a least squares approach with weights based on the standard deviations of errors in predictions from the used models.</abstract><pub>IEEE</pub><doi>10.1109/IPIN51156.2021.9662534</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2471-917X
ispartof 2021 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 2021, p.1-8
issn 2471-917X
language eng
recordid cdi_ieee_primary_9662534
source IEEE Xplore All Conference Series
subjects Buildings
Deep learning
fingerprinting
indoor positioning
Neural networks
Optimization
PDR
radio beacons
sensor fusion
smartphone
Task analysis
Time measurement
Training
title Accurate Indoor Positioning Based on Learned Absolute and Relative Models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T11%3A33%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Accurate%20Indoor%20Positioning%20Based%20on%20Learned%20Absolute%20and%20Relative%20Models&rft.btitle=2021%20International%20Conference%20on%20Indoor%20Positioning%20and%20Indoor%20Navigation%20(IPIN)&rft.au=Kjellson,%20Christoffer&rft.date=2021-11-29&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.eissn=2471-917X&rft_id=info:doi/10.1109/IPIN51156.2021.9662534&rft.eisbn=1665404027&rft.eisbn_list=9781665404020&rft_dat=%3Cieee_CHZPO%3E9662534%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i272t-9a36508e003c91e40fbf75511a2be5787b979d067f09877a298de3c1f83f7a123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9662534&rfr_iscdi=true