Loading…
Accurate Indoor Positioning Based on Learned Absolute and Relative Models
To improve the accuracy of indoor positioning systems it can be useful to combine different types of sensor data. This paper describes deep learning methods both for estimating absolute positions and for performing pedestrian dead reckoning, and then how to combine the resulting estimates using weig...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 8 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Kjellson, Christoffer Larsson, Martin Astrom, Kalle Oskarsson, Magnus |
description | To improve the accuracy of indoor positioning systems it can be useful to combine different types of sensor data. This paper describes deep learning methods both for estimating absolute positions and for performing pedestrian dead reckoning, and then how to combine the resulting estimates using weighted least squares optimization. The positioning model is based on a custom neural network which uses measurements of received signal strength indication from one instant of time as input. The model for estimating relative positions is on the other hand based on inertial sensors, the accelerometer, magnetometer and gyroscope. The position estimates are then combined using a least squares approach with weights based on the standard deviations of errors in predictions from the used models. |
doi_str_mv | 10.1109/IPIN51156.2021.9662534 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9662534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9662534</ieee_id><sourcerecordid>9662534</sourcerecordid><originalsourceid>FETCH-LOGICAL-i272t-9a36508e003c91e40fbf75511a2be5787b979d067f09877a298de3c1f83f7a123</originalsourceid><addsrcrecordid>eNotj9FKwzAUhqMgOOeeQJC8QOs5SZM0l3XoLFQdouDdSNtTidREmk7w7R24q--_-PjhY-waIUcEe1Nv6yeFqHQuQGButRZKFifsArVWBRQgzClbiMJgZtG8n7NVSp8AgBpRQ7lgddV1-8nNxOvQxzjxbUx-9jH48MFvXaKex8AbclM4zKpNcdwfZBd6_kKjm_0P8cfY05gu2dngxkSrI5fs7f7udf2QNc-bel01mRdGzJl1UisoCUB2FqmAoR2MOjQ40ZIypWmtsT1oM4AtjXHClj3JDodSDsahkEt29f_riWj3PfkvN_3ujuXyD6bcTMA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Accurate Indoor Positioning Based on Learned Absolute and Relative Models</title><source>IEEE Xplore All Conference Series</source><creator>Kjellson, Christoffer ; Larsson, Martin ; Astrom, Kalle ; Oskarsson, Magnus</creator><creatorcontrib>Kjellson, Christoffer ; Larsson, Martin ; Astrom, Kalle ; Oskarsson, Magnus</creatorcontrib><description>To improve the accuracy of indoor positioning systems it can be useful to combine different types of sensor data. This paper describes deep learning methods both for estimating absolute positions and for performing pedestrian dead reckoning, and then how to combine the resulting estimates using weighted least squares optimization. The positioning model is based on a custom neural network which uses measurements of received signal strength indication from one instant of time as input. The model for estimating relative positions is on the other hand based on inertial sensors, the accelerometer, magnetometer and gyroscope. The position estimates are then combined using a least squares approach with weights based on the standard deviations of errors in predictions from the used models.</description><identifier>EISSN: 2471-917X</identifier><identifier>EISBN: 1665404027</identifier><identifier>EISBN: 9781665404020</identifier><identifier>DOI: 10.1109/IPIN51156.2021.9662534</identifier><language>eng</language><publisher>IEEE</publisher><subject>Buildings ; Deep learning ; fingerprinting ; indoor positioning ; Neural networks ; Optimization ; PDR ; radio beacons ; sensor fusion ; smartphone ; Task analysis ; Time measurement ; Training</subject><ispartof>2021 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 2021, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9662534$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,23908,23909,25117,27901,54529,54906</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9662534$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kjellson, Christoffer</creatorcontrib><creatorcontrib>Larsson, Martin</creatorcontrib><creatorcontrib>Astrom, Kalle</creatorcontrib><creatorcontrib>Oskarsson, Magnus</creatorcontrib><title>Accurate Indoor Positioning Based on Learned Absolute and Relative Models</title><title>2021 International Conference on Indoor Positioning and Indoor Navigation (IPIN)</title><addtitle>IPIN</addtitle><description>To improve the accuracy of indoor positioning systems it can be useful to combine different types of sensor data. This paper describes deep learning methods both for estimating absolute positions and for performing pedestrian dead reckoning, and then how to combine the resulting estimates using weighted least squares optimization. The positioning model is based on a custom neural network which uses measurements of received signal strength indication from one instant of time as input. The model for estimating relative positions is on the other hand based on inertial sensors, the accelerometer, magnetometer and gyroscope. The position estimates are then combined using a least squares approach with weights based on the standard deviations of errors in predictions from the used models.</description><subject>Buildings</subject><subject>Deep learning</subject><subject>fingerprinting</subject><subject>indoor positioning</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>PDR</subject><subject>radio beacons</subject><subject>sensor fusion</subject><subject>smartphone</subject><subject>Task analysis</subject><subject>Time measurement</subject><subject>Training</subject><issn>2471-917X</issn><isbn>1665404027</isbn><isbn>9781665404020</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj9FKwzAUhqMgOOeeQJC8QOs5SZM0l3XoLFQdouDdSNtTidREmk7w7R24q--_-PjhY-waIUcEe1Nv6yeFqHQuQGButRZKFifsArVWBRQgzClbiMJgZtG8n7NVSp8AgBpRQ7lgddV1-8nNxOvQxzjxbUx-9jH48MFvXaKex8AbclM4zKpNcdwfZBd6_kKjm_0P8cfY05gu2dngxkSrI5fs7f7udf2QNc-bel01mRdGzJl1UisoCUB2FqmAoR2MOjQ40ZIypWmtsT1oM4AtjXHClj3JDodSDsahkEt29f_riWj3PfkvN_3ujuXyD6bcTMA</recordid><startdate>20211129</startdate><enddate>20211129</enddate><creator>Kjellson, Christoffer</creator><creator>Larsson, Martin</creator><creator>Astrom, Kalle</creator><creator>Oskarsson, Magnus</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20211129</creationdate><title>Accurate Indoor Positioning Based on Learned Absolute and Relative Models</title><author>Kjellson, Christoffer ; Larsson, Martin ; Astrom, Kalle ; Oskarsson, Magnus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i272t-9a36508e003c91e40fbf75511a2be5787b979d067f09877a298de3c1f83f7a123</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Buildings</topic><topic>Deep learning</topic><topic>fingerprinting</topic><topic>indoor positioning</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>PDR</topic><topic>radio beacons</topic><topic>sensor fusion</topic><topic>smartphone</topic><topic>Task analysis</topic><topic>Time measurement</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Kjellson, Christoffer</creatorcontrib><creatorcontrib>Larsson, Martin</creatorcontrib><creatorcontrib>Astrom, Kalle</creatorcontrib><creatorcontrib>Oskarsson, Magnus</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kjellson, Christoffer</au><au>Larsson, Martin</au><au>Astrom, Kalle</au><au>Oskarsson, Magnus</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Accurate Indoor Positioning Based on Learned Absolute and Relative Models</atitle><btitle>2021 International Conference on Indoor Positioning and Indoor Navigation (IPIN)</btitle><stitle>IPIN</stitle><date>2021-11-29</date><risdate>2021</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><eissn>2471-917X</eissn><eisbn>1665404027</eisbn><eisbn>9781665404020</eisbn><abstract>To improve the accuracy of indoor positioning systems it can be useful to combine different types of sensor data. This paper describes deep learning methods both for estimating absolute positions and for performing pedestrian dead reckoning, and then how to combine the resulting estimates using weighted least squares optimization. The positioning model is based on a custom neural network which uses measurements of received signal strength indication from one instant of time as input. The model for estimating relative positions is on the other hand based on inertial sensors, the accelerometer, magnetometer and gyroscope. The position estimates are then combined using a least squares approach with weights based on the standard deviations of errors in predictions from the used models.</abstract><pub>IEEE</pub><doi>10.1109/IPIN51156.2021.9662534</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2471-917X |
ispartof | 2021 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 2021, p.1-8 |
issn | 2471-917X |
language | eng |
recordid | cdi_ieee_primary_9662534 |
source | IEEE Xplore All Conference Series |
subjects | Buildings Deep learning fingerprinting indoor positioning Neural networks Optimization PDR radio beacons sensor fusion smartphone Task analysis Time measurement Training |
title | Accurate Indoor Positioning Based on Learned Absolute and Relative Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T11%3A33%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Accurate%20Indoor%20Positioning%20Based%20on%20Learned%20Absolute%20and%20Relative%20Models&rft.btitle=2021%20International%20Conference%20on%20Indoor%20Positioning%20and%20Indoor%20Navigation%20(IPIN)&rft.au=Kjellson,%20Christoffer&rft.date=2021-11-29&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.eissn=2471-917X&rft_id=info:doi/10.1109/IPIN51156.2021.9662534&rft.eisbn=1665404027&rft.eisbn_list=9781665404020&rft_dat=%3Cieee_CHZPO%3E9662534%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i272t-9a36508e003c91e40fbf75511a2be5787b979d067f09877a298de3c1f83f7a123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9662534&rfr_iscdi=true |