Loading…

Patch-Aware Deep Hyperspectral and Multispectral Image Fusion by Unfolding Subspace-Based Optimization Model

Hyperspectral and multispectral image fusion aims to fuse a low-spatial-resolution hyperspectral image (HSI) and a high-spatial-resolution multispectral image to form a high-spatial-resolution HSI. Motivated by the success of model- and deep learning-based approaches, we propose a novel patch-aware...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in applied earth observations and remote sensing 2022, Vol.15, p.1024-1038
Main Authors: Liu, Jianjun, Shen, Dunbin, Wu, Zebin, Xiao, Liang, Sun, Jun, Yan, Hong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hyperspectral and multispectral image fusion aims to fuse a low-spatial-resolution hyperspectral image (HSI) and a high-spatial-resolution multispectral image to form a high-spatial-resolution HSI. Motivated by the success of model- and deep learning-based approaches, we propose a novel patch-aware deep fusion approach for HSI by unfolding a subspace-based optimization model, where moderate-sized patches are used in both training and test phases. The goal of this approach is to make full use of the information of patch under subspace representation, restrict the scale and enhance the interpretability of the deep network, thereby improving the fusion. First, a subspace-based fusion model was built with two regularization terms to localize pixels and extract texture. Then, the subspace-based fusion model was solved by the alternating direction method of multipliers algorithm, and the model was divided into one fidelity-based problem and two regularization-based problems. Finally, a structured deep fusion network was proposed by unfolding all steps of the algorithm as network layers. Specifically, the fidelity-based problem was solved by a gradient descent algorithm and implemented by a network. The two regularization-based problems were described by proximal operators and learnt by two u-shaped architectures. Moreover, an aggregation fusion technique was proposed to improve the performance by averaging the fused images in all iterations and aggregating the overlapping patches in the test phase. Experimental results, conducted on both synthetic and real datasets, demonstrated the effectiveness of the proposed approach.
ISSN:1939-1404
2151-1535
DOI:10.1109/JSTARS.2022.3140211