Loading…

Cu Clip-Bonding Method With Optimized Source Inductance for Current Balancing in Multichip SiC MOSFET Power Module

Cu clip-bonding is a promising packaging method for lower resistance, lower inductance, and higher reliability than wire-bonding. Previous studies only simply replace bond wires with Cu clips on an individual die. However, current sharing and thermal coupling issues among multichip modules are still...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power electronics 2022-07, Vol.37 (7), p.7952-7964
Main Authors: Wang, Laili, Zhang, Tongyu, Yang, Fengtao, Ma, Dingkun, Zhao, Cheng, Pei, Yunqing, Gan, Yongmei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c223t-f9ec9eb40a7cab9e806b8ce23c8cbdc81542d924f0e6cf6fcc02e43c0d8f429e3
cites cdi_FETCH-LOGICAL-c223t-f9ec9eb40a7cab9e806b8ce23c8cbdc81542d924f0e6cf6fcc02e43c0d8f429e3
container_end_page 7964
container_issue 7
container_start_page 7952
container_title IEEE transactions on power electronics
container_volume 37
creator Wang, Laili
Zhang, Tongyu
Yang, Fengtao
Ma, Dingkun
Zhao, Cheng
Pei, Yunqing
Gan, Yongmei
description Cu clip-bonding is a promising packaging method for lower resistance, lower inductance, and higher reliability than wire-bonding. Previous studies only simply replace bond wires with Cu clips on an individual die. However, current sharing and thermal coupling issues among multichip modules are still big challenges in the clip-bonded silicon carbide (SiC) mosfet power module. In this article, a novel source inductance optimization method is proposed. Extra modification paths (MPs) on Cu clips are used in this method. A clip-bonded half-bridge multichip SiC power module is designed and fabricated to verify the superiority of the method. In a simple straight layout, the distance between adjacent dies is large enough to avoid heat concentration and junction temperature differences resulting from the thermal coupling effect. The MPs structure on the Cu clip is designed to optimize the power source inductances. Parasitic circuit model and mathematical analysis are derived to demonstrate the features of proposed MPs. Simulations and experiments workbench are conducted to analyze drain current sharing performance. Derivation and simulation show the highest branch's inductance is reduced. Test results show the current imbalance and loss imbalance are relatively mitigated, which proves that the effect of power inductances imbalance is suppressed by the proposed optimization method.
doi_str_mv 10.1109/TPEL.2022.3141373
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9674776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9674776</ieee_id><sourcerecordid>2643033605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-f9ec9eb40a7cab9e806b8ce23c8cbdc81542d924f0e6cf6fcc02e43c0d8f429e3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jw6-5GPPdpQtdDQQiseQ7KZ2C1pNm4SRH-9CS2eZhied4Z5CLlnMGMM1NNus1jNOHA-E0wyEYoLMmFKMg8YhJdkAlHke5FS4prctO0BgEkf2IS4uKdxZRpvbuvC1J80wW5vC_phuj1dN505ml8s6Nb2TiNd1kWvu6we2tI6GvfOYd3ReVYNszFtapr0VWf03jR0a2KarLcvix3d2G90NLFFX-EtuSqzqsW7c52S9wGJ37zV-nUZP688zbnovFKhVphLyEKd5QojCPJIIxc60nmhI-ZLXiguS8BAl0GpNXCUQkMRlZIrFFPyeNrbOPvVY9ulh-GLejiZ8kAKECIAf6DYidLOtq3DMm2cOWbuJ2WQjmrTUW06qk3PaofMwyljEPGfV0EowzAQf5lcdZs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2643033605</pqid></control><display><type>article</type><title>Cu Clip-Bonding Method With Optimized Source Inductance for Current Balancing in Multichip SiC MOSFET Power Module</title><source>IEEE Xplore (Online service)</source><creator>Wang, Laili ; Zhang, Tongyu ; Yang, Fengtao ; Ma, Dingkun ; Zhao, Cheng ; Pei, Yunqing ; Gan, Yongmei</creator><creatorcontrib>Wang, Laili ; Zhang, Tongyu ; Yang, Fengtao ; Ma, Dingkun ; Zhao, Cheng ; Pei, Yunqing ; Gan, Yongmei</creatorcontrib><description>Cu clip-bonding is a promising packaging method for lower resistance, lower inductance, and higher reliability than wire-bonding. Previous studies only simply replace bond wires with Cu clips on an individual die. However, current sharing and thermal coupling issues among multichip modules are still big challenges in the clip-bonded silicon carbide (SiC) mosfet power module. In this article, a novel source inductance optimization method is proposed. Extra modification paths (MPs) on Cu clips are used in this method. A clip-bonded half-bridge multichip SiC power module is designed and fabricated to verify the superiority of the method. In a simple straight layout, the distance between adjacent dies is large enough to avoid heat concentration and junction temperature differences resulting from the thermal coupling effect. The MPs structure on the Cu clip is designed to optimize the power source inductances. Parasitic circuit model and mathematical analysis are derived to demonstrate the features of proposed MPs. Simulations and experiments workbench are conducted to analyze drain current sharing performance. Derivation and simulation show the highest branch's inductance is reduced. Test results show the current imbalance and loss imbalance are relatively mitigated, which proves that the effect of power inductances imbalance is suppressed by the proposed optimization method.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2022.3141373</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bonding ; Circuit design ; Clips ; Cu clip-bonding ; Current sharing ; Inductance ; Layout ; Logic gates ; Mathematical analysis ; Modules ; MOSFET ; MOSFETs ; Multichip modules ; Optimization ; parasitic inductance ; power module ; Power sources ; Silicon carbide ; silicon carbide (SiC) &lt;sc xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;mosfet ; Temperature gradients ; Thermal coupling ; Wires</subject><ispartof>IEEE transactions on power electronics, 2022-07, Vol.37 (7), p.7952-7964</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-f9ec9eb40a7cab9e806b8ce23c8cbdc81542d924f0e6cf6fcc02e43c0d8f429e3</citedby><cites>FETCH-LOGICAL-c223t-f9ec9eb40a7cab9e806b8ce23c8cbdc81542d924f0e6cf6fcc02e43c0d8f429e3</cites><orcidid>0000-0003-1277-0208 ; 0000-0001-7205-4196 ; 0000-0003-4778-5901 ; 0000-0003-0156-5719 ; 0000-0003-2603-0200 ; 0000-0002-9938-5590</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9674776$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Wang, Laili</creatorcontrib><creatorcontrib>Zhang, Tongyu</creatorcontrib><creatorcontrib>Yang, Fengtao</creatorcontrib><creatorcontrib>Ma, Dingkun</creatorcontrib><creatorcontrib>Zhao, Cheng</creatorcontrib><creatorcontrib>Pei, Yunqing</creatorcontrib><creatorcontrib>Gan, Yongmei</creatorcontrib><title>Cu Clip-Bonding Method With Optimized Source Inductance for Current Balancing in Multichip SiC MOSFET Power Module</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Cu clip-bonding is a promising packaging method for lower resistance, lower inductance, and higher reliability than wire-bonding. Previous studies only simply replace bond wires with Cu clips on an individual die. However, current sharing and thermal coupling issues among multichip modules are still big challenges in the clip-bonded silicon carbide (SiC) mosfet power module. In this article, a novel source inductance optimization method is proposed. Extra modification paths (MPs) on Cu clips are used in this method. A clip-bonded half-bridge multichip SiC power module is designed and fabricated to verify the superiority of the method. In a simple straight layout, the distance between adjacent dies is large enough to avoid heat concentration and junction temperature differences resulting from the thermal coupling effect. The MPs structure on the Cu clip is designed to optimize the power source inductances. Parasitic circuit model and mathematical analysis are derived to demonstrate the features of proposed MPs. Simulations and experiments workbench are conducted to analyze drain current sharing performance. Derivation and simulation show the highest branch's inductance is reduced. Test results show the current imbalance and loss imbalance are relatively mitigated, which proves that the effect of power inductances imbalance is suppressed by the proposed optimization method.</description><subject>Bonding</subject><subject>Circuit design</subject><subject>Clips</subject><subject>Cu clip-bonding</subject><subject>Current sharing</subject><subject>Inductance</subject><subject>Layout</subject><subject>Logic gates</subject><subject>Mathematical analysis</subject><subject>Modules</subject><subject>MOSFET</subject><subject>MOSFETs</subject><subject>Multichip modules</subject><subject>Optimization</subject><subject>parasitic inductance</subject><subject>power module</subject><subject>Power sources</subject><subject>Silicon carbide</subject><subject>silicon carbide (SiC) &lt;sc xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;mosfet</subject><subject>Temperature gradients</subject><subject>Thermal coupling</subject><subject>Wires</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jw6-5GPPdpQtdDQQiseQ7KZ2C1pNm4SRH-9CS2eZhied4Z5CLlnMGMM1NNus1jNOHA-E0wyEYoLMmFKMg8YhJdkAlHke5FS4prctO0BgEkf2IS4uKdxZRpvbuvC1J80wW5vC_phuj1dN505ml8s6Nb2TiNd1kWvu6we2tI6GvfOYd3ReVYNszFtapr0VWf03jR0a2KarLcvix3d2G90NLFFX-EtuSqzqsW7c52S9wGJ37zV-nUZP688zbnovFKhVphLyEKd5QojCPJIIxc60nmhI-ZLXiguS8BAl0GpNXCUQkMRlZIrFFPyeNrbOPvVY9ulh-GLejiZ8kAKECIAf6DYidLOtq3DMm2cOWbuJ2WQjmrTUW06qk3PaofMwyljEPGfV0EowzAQf5lcdZs</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Wang, Laili</creator><creator>Zhang, Tongyu</creator><creator>Yang, Fengtao</creator><creator>Ma, Dingkun</creator><creator>Zhao, Cheng</creator><creator>Pei, Yunqing</creator><creator>Gan, Yongmei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1277-0208</orcidid><orcidid>https://orcid.org/0000-0001-7205-4196</orcidid><orcidid>https://orcid.org/0000-0003-4778-5901</orcidid><orcidid>https://orcid.org/0000-0003-0156-5719</orcidid><orcidid>https://orcid.org/0000-0003-2603-0200</orcidid><orcidid>https://orcid.org/0000-0002-9938-5590</orcidid></search><sort><creationdate>20220701</creationdate><title>Cu Clip-Bonding Method With Optimized Source Inductance for Current Balancing in Multichip SiC MOSFET Power Module</title><author>Wang, Laili ; Zhang, Tongyu ; Yang, Fengtao ; Ma, Dingkun ; Zhao, Cheng ; Pei, Yunqing ; Gan, Yongmei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-f9ec9eb40a7cab9e806b8ce23c8cbdc81542d924f0e6cf6fcc02e43c0d8f429e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bonding</topic><topic>Circuit design</topic><topic>Clips</topic><topic>Cu clip-bonding</topic><topic>Current sharing</topic><topic>Inductance</topic><topic>Layout</topic><topic>Logic gates</topic><topic>Mathematical analysis</topic><topic>Modules</topic><topic>MOSFET</topic><topic>MOSFETs</topic><topic>Multichip modules</topic><topic>Optimization</topic><topic>parasitic inductance</topic><topic>power module</topic><topic>Power sources</topic><topic>Silicon carbide</topic><topic>silicon carbide (SiC) &lt;sc xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;mosfet</topic><topic>Temperature gradients</topic><topic>Thermal coupling</topic><topic>Wires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Laili</creatorcontrib><creatorcontrib>Zhang, Tongyu</creatorcontrib><creatorcontrib>Yang, Fengtao</creatorcontrib><creatorcontrib>Ma, Dingkun</creatorcontrib><creatorcontrib>Zhao, Cheng</creatorcontrib><creatorcontrib>Pei, Yunqing</creatorcontrib><creatorcontrib>Gan, Yongmei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Laili</au><au>Zhang, Tongyu</au><au>Yang, Fengtao</au><au>Ma, Dingkun</au><au>Zhao, Cheng</au><au>Pei, Yunqing</au><au>Gan, Yongmei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cu Clip-Bonding Method With Optimized Source Inductance for Current Balancing in Multichip SiC MOSFET Power Module</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>37</volume><issue>7</issue><spage>7952</spage><epage>7964</epage><pages>7952-7964</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Cu clip-bonding is a promising packaging method for lower resistance, lower inductance, and higher reliability than wire-bonding. Previous studies only simply replace bond wires with Cu clips on an individual die. However, current sharing and thermal coupling issues among multichip modules are still big challenges in the clip-bonded silicon carbide (SiC) mosfet power module. In this article, a novel source inductance optimization method is proposed. Extra modification paths (MPs) on Cu clips are used in this method. A clip-bonded half-bridge multichip SiC power module is designed and fabricated to verify the superiority of the method. In a simple straight layout, the distance between adjacent dies is large enough to avoid heat concentration and junction temperature differences resulting from the thermal coupling effect. The MPs structure on the Cu clip is designed to optimize the power source inductances. Parasitic circuit model and mathematical analysis are derived to demonstrate the features of proposed MPs. Simulations and experiments workbench are conducted to analyze drain current sharing performance. Derivation and simulation show the highest branch's inductance is reduced. Test results show the current imbalance and loss imbalance are relatively mitigated, which proves that the effect of power inductances imbalance is suppressed by the proposed optimization method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2022.3141373</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1277-0208</orcidid><orcidid>https://orcid.org/0000-0001-7205-4196</orcidid><orcidid>https://orcid.org/0000-0003-4778-5901</orcidid><orcidid>https://orcid.org/0000-0003-0156-5719</orcidid><orcidid>https://orcid.org/0000-0003-2603-0200</orcidid><orcidid>https://orcid.org/0000-0002-9938-5590</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2022-07, Vol.37 (7), p.7952-7964
issn 0885-8993
1941-0107
language eng
recordid cdi_ieee_primary_9674776
source IEEE Xplore (Online service)
subjects Bonding
Circuit design
Clips
Cu clip-bonding
Current sharing
Inductance
Layout
Logic gates
Mathematical analysis
Modules
MOSFET
MOSFETs
Multichip modules
Optimization
parasitic inductance
power module
Power sources
Silicon carbide
silicon carbide (SiC) <sc xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">mosfet
Temperature gradients
Thermal coupling
Wires
title Cu Clip-Bonding Method With Optimized Source Inductance for Current Balancing in Multichip SiC MOSFET Power Module
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A09%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cu%20Clip-Bonding%20Method%20With%20Optimized%20Source%20Inductance%20for%20Current%20Balancing%20in%20Multichip%20SiC%20MOSFET%20Power%20Module&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Wang,%20Laili&rft.date=2022-07-01&rft.volume=37&rft.issue=7&rft.spage=7952&rft.epage=7964&rft.pages=7952-7964&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2022.3141373&rft_dat=%3Cproquest_ieee_%3E2643033605%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c223t-f9ec9eb40a7cab9e806b8ce23c8cbdc81542d924f0e6cf6fcc02e43c0d8f429e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2643033605&rft_id=info:pmid/&rft_ieee_id=9674776&rfr_iscdi=true