Loading…
Cu Clip-Bonding Method With Optimized Source Inductance for Current Balancing in Multichip SiC MOSFET Power Module
Cu clip-bonding is a promising packaging method for lower resistance, lower inductance, and higher reliability than wire-bonding. Previous studies only simply replace bond wires with Cu clips on an individual die. However, current sharing and thermal coupling issues among multichip modules are still...
Saved in:
Published in: | IEEE transactions on power electronics 2022-07, Vol.37 (7), p.7952-7964 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c223t-f9ec9eb40a7cab9e806b8ce23c8cbdc81542d924f0e6cf6fcc02e43c0d8f429e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c223t-f9ec9eb40a7cab9e806b8ce23c8cbdc81542d924f0e6cf6fcc02e43c0d8f429e3 |
container_end_page | 7964 |
container_issue | 7 |
container_start_page | 7952 |
container_title | IEEE transactions on power electronics |
container_volume | 37 |
creator | Wang, Laili Zhang, Tongyu Yang, Fengtao Ma, Dingkun Zhao, Cheng Pei, Yunqing Gan, Yongmei |
description | Cu clip-bonding is a promising packaging method for lower resistance, lower inductance, and higher reliability than wire-bonding. Previous studies only simply replace bond wires with Cu clips on an individual die. However, current sharing and thermal coupling issues among multichip modules are still big challenges in the clip-bonded silicon carbide (SiC) mosfet power module. In this article, a novel source inductance optimization method is proposed. Extra modification paths (MPs) on Cu clips are used in this method. A clip-bonded half-bridge multichip SiC power module is designed and fabricated to verify the superiority of the method. In a simple straight layout, the distance between adjacent dies is large enough to avoid heat concentration and junction temperature differences resulting from the thermal coupling effect. The MPs structure on the Cu clip is designed to optimize the power source inductances. Parasitic circuit model and mathematical analysis are derived to demonstrate the features of proposed MPs. Simulations and experiments workbench are conducted to analyze drain current sharing performance. Derivation and simulation show the highest branch's inductance is reduced. Test results show the current imbalance and loss imbalance are relatively mitigated, which proves that the effect of power inductances imbalance is suppressed by the proposed optimization method. |
doi_str_mv | 10.1109/TPEL.2022.3141373 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9674776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9674776</ieee_id><sourcerecordid>2643033605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-f9ec9eb40a7cab9e806b8ce23c8cbdc81542d924f0e6cf6fcc02e43c0d8f429e3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jw6-5GPPdpQtdDQQiseQ7KZ2C1pNm4SRH-9CS2eZhied4Z5CLlnMGMM1NNus1jNOHA-E0wyEYoLMmFKMg8YhJdkAlHke5FS4prctO0BgEkf2IS4uKdxZRpvbuvC1J80wW5vC_phuj1dN505ml8s6Nb2TiNd1kWvu6we2tI6GvfOYd3ReVYNszFtapr0VWf03jR0a2KarLcvix3d2G90NLFFX-EtuSqzqsW7c52S9wGJ37zV-nUZP688zbnovFKhVphLyEKd5QojCPJIIxc60nmhI-ZLXiguS8BAl0GpNXCUQkMRlZIrFFPyeNrbOPvVY9ulh-GLejiZ8kAKECIAf6DYidLOtq3DMm2cOWbuJ2WQjmrTUW06qk3PaofMwyljEPGfV0EowzAQf5lcdZs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2643033605</pqid></control><display><type>article</type><title>Cu Clip-Bonding Method With Optimized Source Inductance for Current Balancing in Multichip SiC MOSFET Power Module</title><source>IEEE Xplore (Online service)</source><creator>Wang, Laili ; Zhang, Tongyu ; Yang, Fengtao ; Ma, Dingkun ; Zhao, Cheng ; Pei, Yunqing ; Gan, Yongmei</creator><creatorcontrib>Wang, Laili ; Zhang, Tongyu ; Yang, Fengtao ; Ma, Dingkun ; Zhao, Cheng ; Pei, Yunqing ; Gan, Yongmei</creatorcontrib><description>Cu clip-bonding is a promising packaging method for lower resistance, lower inductance, and higher reliability than wire-bonding. Previous studies only simply replace bond wires with Cu clips on an individual die. However, current sharing and thermal coupling issues among multichip modules are still big challenges in the clip-bonded silicon carbide (SiC) mosfet power module. In this article, a novel source inductance optimization method is proposed. Extra modification paths (MPs) on Cu clips are used in this method. A clip-bonded half-bridge multichip SiC power module is designed and fabricated to verify the superiority of the method. In a simple straight layout, the distance between adjacent dies is large enough to avoid heat concentration and junction temperature differences resulting from the thermal coupling effect. The MPs structure on the Cu clip is designed to optimize the power source inductances. Parasitic circuit model and mathematical analysis are derived to demonstrate the features of proposed MPs. Simulations and experiments workbench are conducted to analyze drain current sharing performance. Derivation and simulation show the highest branch's inductance is reduced. Test results show the current imbalance and loss imbalance are relatively mitigated, which proves that the effect of power inductances imbalance is suppressed by the proposed optimization method.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2022.3141373</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bonding ; Circuit design ; Clips ; Cu clip-bonding ; Current sharing ; Inductance ; Layout ; Logic gates ; Mathematical analysis ; Modules ; MOSFET ; MOSFETs ; Multichip modules ; Optimization ; parasitic inductance ; power module ; Power sources ; Silicon carbide ; silicon carbide (SiC) <sc xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">mosfet ; Temperature gradients ; Thermal coupling ; Wires</subject><ispartof>IEEE transactions on power electronics, 2022-07, Vol.37 (7), p.7952-7964</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-f9ec9eb40a7cab9e806b8ce23c8cbdc81542d924f0e6cf6fcc02e43c0d8f429e3</citedby><cites>FETCH-LOGICAL-c223t-f9ec9eb40a7cab9e806b8ce23c8cbdc81542d924f0e6cf6fcc02e43c0d8f429e3</cites><orcidid>0000-0003-1277-0208 ; 0000-0001-7205-4196 ; 0000-0003-4778-5901 ; 0000-0003-0156-5719 ; 0000-0003-2603-0200 ; 0000-0002-9938-5590</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9674776$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Wang, Laili</creatorcontrib><creatorcontrib>Zhang, Tongyu</creatorcontrib><creatorcontrib>Yang, Fengtao</creatorcontrib><creatorcontrib>Ma, Dingkun</creatorcontrib><creatorcontrib>Zhao, Cheng</creatorcontrib><creatorcontrib>Pei, Yunqing</creatorcontrib><creatorcontrib>Gan, Yongmei</creatorcontrib><title>Cu Clip-Bonding Method With Optimized Source Inductance for Current Balancing in Multichip SiC MOSFET Power Module</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Cu clip-bonding is a promising packaging method for lower resistance, lower inductance, and higher reliability than wire-bonding. Previous studies only simply replace bond wires with Cu clips on an individual die. However, current sharing and thermal coupling issues among multichip modules are still big challenges in the clip-bonded silicon carbide (SiC) mosfet power module. In this article, a novel source inductance optimization method is proposed. Extra modification paths (MPs) on Cu clips are used in this method. A clip-bonded half-bridge multichip SiC power module is designed and fabricated to verify the superiority of the method. In a simple straight layout, the distance between adjacent dies is large enough to avoid heat concentration and junction temperature differences resulting from the thermal coupling effect. The MPs structure on the Cu clip is designed to optimize the power source inductances. Parasitic circuit model and mathematical analysis are derived to demonstrate the features of proposed MPs. Simulations and experiments workbench are conducted to analyze drain current sharing performance. Derivation and simulation show the highest branch's inductance is reduced. Test results show the current imbalance and loss imbalance are relatively mitigated, which proves that the effect of power inductances imbalance is suppressed by the proposed optimization method.</description><subject>Bonding</subject><subject>Circuit design</subject><subject>Clips</subject><subject>Cu clip-bonding</subject><subject>Current sharing</subject><subject>Inductance</subject><subject>Layout</subject><subject>Logic gates</subject><subject>Mathematical analysis</subject><subject>Modules</subject><subject>MOSFET</subject><subject>MOSFETs</subject><subject>Multichip modules</subject><subject>Optimization</subject><subject>parasitic inductance</subject><subject>power module</subject><subject>Power sources</subject><subject>Silicon carbide</subject><subject>silicon carbide (SiC) <sc xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">mosfet</subject><subject>Temperature gradients</subject><subject>Thermal coupling</subject><subject>Wires</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jw6-5GPPdpQtdDQQiseQ7KZ2C1pNm4SRH-9CS2eZhied4Z5CLlnMGMM1NNus1jNOHA-E0wyEYoLMmFKMg8YhJdkAlHke5FS4prctO0BgEkf2IS4uKdxZRpvbuvC1J80wW5vC_phuj1dN505ml8s6Nb2TiNd1kWvu6we2tI6GvfOYd3ReVYNszFtapr0VWf03jR0a2KarLcvix3d2G90NLFFX-EtuSqzqsW7c52S9wGJ37zV-nUZP688zbnovFKhVphLyEKd5QojCPJIIxc60nmhI-ZLXiguS8BAl0GpNXCUQkMRlZIrFFPyeNrbOPvVY9ulh-GLejiZ8kAKECIAf6DYidLOtq3DMm2cOWbuJ2WQjmrTUW06qk3PaofMwyljEPGfV0EowzAQf5lcdZs</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Wang, Laili</creator><creator>Zhang, Tongyu</creator><creator>Yang, Fengtao</creator><creator>Ma, Dingkun</creator><creator>Zhao, Cheng</creator><creator>Pei, Yunqing</creator><creator>Gan, Yongmei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1277-0208</orcidid><orcidid>https://orcid.org/0000-0001-7205-4196</orcidid><orcidid>https://orcid.org/0000-0003-4778-5901</orcidid><orcidid>https://orcid.org/0000-0003-0156-5719</orcidid><orcidid>https://orcid.org/0000-0003-2603-0200</orcidid><orcidid>https://orcid.org/0000-0002-9938-5590</orcidid></search><sort><creationdate>20220701</creationdate><title>Cu Clip-Bonding Method With Optimized Source Inductance for Current Balancing in Multichip SiC MOSFET Power Module</title><author>Wang, Laili ; Zhang, Tongyu ; Yang, Fengtao ; Ma, Dingkun ; Zhao, Cheng ; Pei, Yunqing ; Gan, Yongmei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-f9ec9eb40a7cab9e806b8ce23c8cbdc81542d924f0e6cf6fcc02e43c0d8f429e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bonding</topic><topic>Circuit design</topic><topic>Clips</topic><topic>Cu clip-bonding</topic><topic>Current sharing</topic><topic>Inductance</topic><topic>Layout</topic><topic>Logic gates</topic><topic>Mathematical analysis</topic><topic>Modules</topic><topic>MOSFET</topic><topic>MOSFETs</topic><topic>Multichip modules</topic><topic>Optimization</topic><topic>parasitic inductance</topic><topic>power module</topic><topic>Power sources</topic><topic>Silicon carbide</topic><topic>silicon carbide (SiC) <sc xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">mosfet</topic><topic>Temperature gradients</topic><topic>Thermal coupling</topic><topic>Wires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Laili</creatorcontrib><creatorcontrib>Zhang, Tongyu</creatorcontrib><creatorcontrib>Yang, Fengtao</creatorcontrib><creatorcontrib>Ma, Dingkun</creatorcontrib><creatorcontrib>Zhao, Cheng</creatorcontrib><creatorcontrib>Pei, Yunqing</creatorcontrib><creatorcontrib>Gan, Yongmei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Laili</au><au>Zhang, Tongyu</au><au>Yang, Fengtao</au><au>Ma, Dingkun</au><au>Zhao, Cheng</au><au>Pei, Yunqing</au><au>Gan, Yongmei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cu Clip-Bonding Method With Optimized Source Inductance for Current Balancing in Multichip SiC MOSFET Power Module</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>37</volume><issue>7</issue><spage>7952</spage><epage>7964</epage><pages>7952-7964</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Cu clip-bonding is a promising packaging method for lower resistance, lower inductance, and higher reliability than wire-bonding. Previous studies only simply replace bond wires with Cu clips on an individual die. However, current sharing and thermal coupling issues among multichip modules are still big challenges in the clip-bonded silicon carbide (SiC) mosfet power module. In this article, a novel source inductance optimization method is proposed. Extra modification paths (MPs) on Cu clips are used in this method. A clip-bonded half-bridge multichip SiC power module is designed and fabricated to verify the superiority of the method. In a simple straight layout, the distance between adjacent dies is large enough to avoid heat concentration and junction temperature differences resulting from the thermal coupling effect. The MPs structure on the Cu clip is designed to optimize the power source inductances. Parasitic circuit model and mathematical analysis are derived to demonstrate the features of proposed MPs. Simulations and experiments workbench are conducted to analyze drain current sharing performance. Derivation and simulation show the highest branch's inductance is reduced. Test results show the current imbalance and loss imbalance are relatively mitigated, which proves that the effect of power inductances imbalance is suppressed by the proposed optimization method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2022.3141373</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1277-0208</orcidid><orcidid>https://orcid.org/0000-0001-7205-4196</orcidid><orcidid>https://orcid.org/0000-0003-4778-5901</orcidid><orcidid>https://orcid.org/0000-0003-0156-5719</orcidid><orcidid>https://orcid.org/0000-0003-2603-0200</orcidid><orcidid>https://orcid.org/0000-0002-9938-5590</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2022-07, Vol.37 (7), p.7952-7964 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_ieee_primary_9674776 |
source | IEEE Xplore (Online service) |
subjects | Bonding Circuit design Clips Cu clip-bonding Current sharing Inductance Layout Logic gates Mathematical analysis Modules MOSFET MOSFETs Multichip modules Optimization parasitic inductance power module Power sources Silicon carbide silicon carbide (SiC) <sc xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">mosfet Temperature gradients Thermal coupling Wires |
title | Cu Clip-Bonding Method With Optimized Source Inductance for Current Balancing in Multichip SiC MOSFET Power Module |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A09%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cu%20Clip-Bonding%20Method%20With%20Optimized%20Source%20Inductance%20for%20Current%20Balancing%20in%20Multichip%20SiC%20MOSFET%20Power%20Module&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Wang,%20Laili&rft.date=2022-07-01&rft.volume=37&rft.issue=7&rft.spage=7952&rft.epage=7964&rft.pages=7952-7964&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2022.3141373&rft_dat=%3Cproquest_ieee_%3E2643033605%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c223t-f9ec9eb40a7cab9e806b8ce23c8cbdc81542d924f0e6cf6fcc02e43c0d8f429e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2643033605&rft_id=info:pmid/&rft_ieee_id=9674776&rfr_iscdi=true |