Loading…

Generative DNA: Representation Learning for DNA-based Approximate Image Storage

Synthetic DNA has received much attention recently as a long-term archival medium alternative due to its high density and durability characteristics. However, most current work has primarily focused on using DNA as a precise storage medium. In this work, we take an alternate view of DNA. Using neura...

Full description

Saved in:
Bibliographic Details
Main Authors: Franzese, Giulio, Yan, Yiqing, Serra, Giuseppe, D'Onofrio, Ivan, Appuswamy, Raja, Michiardi, Pietro
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 05
container_issue
container_start_page 01
container_title
container_volume
creator Franzese, Giulio
Yan, Yiqing
Serra, Giuseppe
D'Onofrio, Ivan
Appuswamy, Raja
Michiardi, Pietro
description Synthetic DNA has received much attention recently as a long-term archival medium alternative due to its high density and durability characteristics. However, most current work has primarily focused on using DNA as a precise storage medium. In this work, we take an alternate view of DNA. Using neural-network-based compression techniques, we transform images into a latent-space representation, which we then store on DNA. By doing so, we transform DNA into an approximate image storage medium, as images generated back from DNA are only approximate representations of the original images. Using several datasets, we investigate the storage benefits of approximation, and study the impact of DNA storage errors (substitutions, indels, bias) on the quality of approximation. In doing so, we demonstrate the feasibility and potential of viewing DNA as an approximate storage medium.
doi_str_mv 10.1109/VCIP53242.2021.9675366
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9675366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9675366</ieee_id><sourcerecordid>9675366</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-4eb17f56050e962016ffef113207ad664eb58d3639685b7e910a6b3a6ef723c83</originalsourceid><addsrcrecordid>eNotj91KxDAUhKMguK77BILkBVpPkuak8a5UXQvFFf9ul9SeLBW3LWkRfXsj7tXAzDB8w9ilgFQIsFdvZfWolcxkKkGK1KLRCvGInQkjc5FrLdQxW0jMZGKVNqdsNU0fACBjIG2-YJs19RTc3H0Rv3korvkTjYEm6ufoDT2vyYW-63fcD-GvkDRuopYX4xiG727vZuLV3u2IP89DiHrOTrz7nGh10CV7vbt9Ke-TerOuyqJOOglqTjJqhPEaQQNZlCDQe_IiQoFxLWLMdd4qVBZz3RiyAhw2yiF5I9V7rpbs4n-3I6LtGCJK-Nke_qtfhQZOrw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Generative DNA: Representation Learning for DNA-based Approximate Image Storage</title><source>IEEE Xplore All Conference Series</source><creator>Franzese, Giulio ; Yan, Yiqing ; Serra, Giuseppe ; D'Onofrio, Ivan ; Appuswamy, Raja ; Michiardi, Pietro</creator><creatorcontrib>Franzese, Giulio ; Yan, Yiqing ; Serra, Giuseppe ; D'Onofrio, Ivan ; Appuswamy, Raja ; Michiardi, Pietro</creatorcontrib><description>Synthetic DNA has received much attention recently as a long-term archival medium alternative due to its high density and durability characteristics. However, most current work has primarily focused on using DNA as a precise storage medium. In this work, we take an alternate view of DNA. Using neural-network-based compression techniques, we transform images into a latent-space representation, which we then store on DNA. By doing so, we transform DNA into an approximate image storage medium, as images generated back from DNA are only approximate representations of the original images. Using several datasets, we investigate the storage benefits of approximation, and study the impact of DNA storage errors (substitutions, indels, bias) on the quality of approximation. In doing so, we demonstrate the feasibility and potential of viewing DNA as an approximate storage medium.</description><identifier>EISSN: 2642-9357</identifier><identifier>EISBN: 1728185513</identifier><identifier>EISBN: 9781728185514</identifier><identifier>DOI: 10.1109/VCIP53242.2021.9675366</identifier><language>eng</language><publisher>IEEE</publisher><subject>approxi-mate storage ; compression ; Costs ; DNA ; DNA storage ; Image coding ; Representation learning ; Roads ; Sequential analysis ; Visual communication</subject><ispartof>2021 International Conference on Visual Communications and Image Processing (VCIP), 2021, p.01-05</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9675366$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9675366$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Franzese, Giulio</creatorcontrib><creatorcontrib>Yan, Yiqing</creatorcontrib><creatorcontrib>Serra, Giuseppe</creatorcontrib><creatorcontrib>D'Onofrio, Ivan</creatorcontrib><creatorcontrib>Appuswamy, Raja</creatorcontrib><creatorcontrib>Michiardi, Pietro</creatorcontrib><title>Generative DNA: Representation Learning for DNA-based Approximate Image Storage</title><title>2021 International Conference on Visual Communications and Image Processing (VCIP)</title><addtitle>VCIP</addtitle><description>Synthetic DNA has received much attention recently as a long-term archival medium alternative due to its high density and durability characteristics. However, most current work has primarily focused on using DNA as a precise storage medium. In this work, we take an alternate view of DNA. Using neural-network-based compression techniques, we transform images into a latent-space representation, which we then store on DNA. By doing so, we transform DNA into an approximate image storage medium, as images generated back from DNA are only approximate representations of the original images. Using several datasets, we investigate the storage benefits of approximation, and study the impact of DNA storage errors (substitutions, indels, bias) on the quality of approximation. In doing so, we demonstrate the feasibility and potential of viewing DNA as an approximate storage medium.</description><subject>approxi-mate storage</subject><subject>compression</subject><subject>Costs</subject><subject>DNA</subject><subject>DNA storage</subject><subject>Image coding</subject><subject>Representation learning</subject><subject>Roads</subject><subject>Sequential analysis</subject><subject>Visual communication</subject><issn>2642-9357</issn><isbn>1728185513</isbn><isbn>9781728185514</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj91KxDAUhKMguK77BILkBVpPkuak8a5UXQvFFf9ul9SeLBW3LWkRfXsj7tXAzDB8w9ilgFQIsFdvZfWolcxkKkGK1KLRCvGInQkjc5FrLdQxW0jMZGKVNqdsNU0fACBjIG2-YJs19RTc3H0Rv3korvkTjYEm6ufoDT2vyYW-63fcD-GvkDRuopYX4xiG727vZuLV3u2IP89DiHrOTrz7nGh10CV7vbt9Ke-TerOuyqJOOglqTjJqhPEaQQNZlCDQe_IiQoFxLWLMdd4qVBZz3RiyAhw2yiF5I9V7rpbs4n-3I6LtGCJK-Nke_qtfhQZOrw</recordid><startdate>20211205</startdate><enddate>20211205</enddate><creator>Franzese, Giulio</creator><creator>Yan, Yiqing</creator><creator>Serra, Giuseppe</creator><creator>D'Onofrio, Ivan</creator><creator>Appuswamy, Raja</creator><creator>Michiardi, Pietro</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20211205</creationdate><title>Generative DNA: Representation Learning for DNA-based Approximate Image Storage</title><author>Franzese, Giulio ; Yan, Yiqing ; Serra, Giuseppe ; D'Onofrio, Ivan ; Appuswamy, Raja ; Michiardi, Pietro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-4eb17f56050e962016ffef113207ad664eb58d3639685b7e910a6b3a6ef723c83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>approxi-mate storage</topic><topic>compression</topic><topic>Costs</topic><topic>DNA</topic><topic>DNA storage</topic><topic>Image coding</topic><topic>Representation learning</topic><topic>Roads</topic><topic>Sequential analysis</topic><topic>Visual communication</topic><toplevel>online_resources</toplevel><creatorcontrib>Franzese, Giulio</creatorcontrib><creatorcontrib>Yan, Yiqing</creatorcontrib><creatorcontrib>Serra, Giuseppe</creatorcontrib><creatorcontrib>D'Onofrio, Ivan</creatorcontrib><creatorcontrib>Appuswamy, Raja</creatorcontrib><creatorcontrib>Michiardi, Pietro</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Franzese, Giulio</au><au>Yan, Yiqing</au><au>Serra, Giuseppe</au><au>D'Onofrio, Ivan</au><au>Appuswamy, Raja</au><au>Michiardi, Pietro</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Generative DNA: Representation Learning for DNA-based Approximate Image Storage</atitle><btitle>2021 International Conference on Visual Communications and Image Processing (VCIP)</btitle><stitle>VCIP</stitle><date>2021-12-05</date><risdate>2021</risdate><spage>01</spage><epage>05</epage><pages>01-05</pages><eissn>2642-9357</eissn><eisbn>1728185513</eisbn><eisbn>9781728185514</eisbn><abstract>Synthetic DNA has received much attention recently as a long-term archival medium alternative due to its high density and durability characteristics. However, most current work has primarily focused on using DNA as a precise storage medium. In this work, we take an alternate view of DNA. Using neural-network-based compression techniques, we transform images into a latent-space representation, which we then store on DNA. By doing so, we transform DNA into an approximate image storage medium, as images generated back from DNA are only approximate representations of the original images. Using several datasets, we investigate the storage benefits of approximation, and study the impact of DNA storage errors (substitutions, indels, bias) on the quality of approximation. In doing so, we demonstrate the feasibility and potential of viewing DNA as an approximate storage medium.</abstract><pub>IEEE</pub><doi>10.1109/VCIP53242.2021.9675366</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2642-9357
ispartof 2021 International Conference on Visual Communications and Image Processing (VCIP), 2021, p.01-05
issn 2642-9357
language eng
recordid cdi_ieee_primary_9675366
source IEEE Xplore All Conference Series
subjects approxi-mate storage
compression
Costs
DNA
DNA storage
Image coding
Representation learning
Roads
Sequential analysis
Visual communication
title Generative DNA: Representation Learning for DNA-based Approximate Image Storage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T05%3A28%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Generative%20DNA:%20Representation%20Learning%20for%20DNA-based%20Approximate%20Image%20Storage&rft.btitle=2021%20International%20Conference%20on%20Visual%20Communications%20and%20Image%20Processing%20(VCIP)&rft.au=Franzese,%20Giulio&rft.date=2021-12-05&rft.spage=01&rft.epage=05&rft.pages=01-05&rft.eissn=2642-9357&rft_id=info:doi/10.1109/VCIP53242.2021.9675366&rft.eisbn=1728185513&rft.eisbn_list=9781728185514&rft_dat=%3Cieee_CHZPO%3E9675366%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-4eb17f56050e962016ffef113207ad664eb58d3639685b7e910a6b3a6ef723c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9675366&rfr_iscdi=true