Loading…
Generative DNA: Representation Learning for DNA-based Approximate Image Storage
Synthetic DNA has received much attention recently as a long-term archival medium alternative due to its high density and durability characteristics. However, most current work has primarily focused on using DNA as a precise storage medium. In this work, we take an alternate view of DNA. Using neura...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 05 |
container_issue | |
container_start_page | 01 |
container_title | |
container_volume | |
creator | Franzese, Giulio Yan, Yiqing Serra, Giuseppe D'Onofrio, Ivan Appuswamy, Raja Michiardi, Pietro |
description | Synthetic DNA has received much attention recently as a long-term archival medium alternative due to its high density and durability characteristics. However, most current work has primarily focused on using DNA as a precise storage medium. In this work, we take an alternate view of DNA. Using neural-network-based compression techniques, we transform images into a latent-space representation, which we then store on DNA. By doing so, we transform DNA into an approximate image storage medium, as images generated back from DNA are only approximate representations of the original images. Using several datasets, we investigate the storage benefits of approximation, and study the impact of DNA storage errors (substitutions, indels, bias) on the quality of approximation. In doing so, we demonstrate the feasibility and potential of viewing DNA as an approximate storage medium. |
doi_str_mv | 10.1109/VCIP53242.2021.9675366 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9675366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9675366</ieee_id><sourcerecordid>9675366</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-4eb17f56050e962016ffef113207ad664eb58d3639685b7e910a6b3a6ef723c83</originalsourceid><addsrcrecordid>eNotj91KxDAUhKMguK77BILkBVpPkuak8a5UXQvFFf9ul9SeLBW3LWkRfXsj7tXAzDB8w9ilgFQIsFdvZfWolcxkKkGK1KLRCvGInQkjc5FrLdQxW0jMZGKVNqdsNU0fACBjIG2-YJs19RTc3H0Rv3korvkTjYEm6ufoDT2vyYW-63fcD-GvkDRuopYX4xiG727vZuLV3u2IP89DiHrOTrz7nGh10CV7vbt9Ke-TerOuyqJOOglqTjJqhPEaQQNZlCDQe_IiQoFxLWLMdd4qVBZz3RiyAhw2yiF5I9V7rpbs4n-3I6LtGCJK-Nke_qtfhQZOrw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Generative DNA: Representation Learning for DNA-based Approximate Image Storage</title><source>IEEE Xplore All Conference Series</source><creator>Franzese, Giulio ; Yan, Yiqing ; Serra, Giuseppe ; D'Onofrio, Ivan ; Appuswamy, Raja ; Michiardi, Pietro</creator><creatorcontrib>Franzese, Giulio ; Yan, Yiqing ; Serra, Giuseppe ; D'Onofrio, Ivan ; Appuswamy, Raja ; Michiardi, Pietro</creatorcontrib><description>Synthetic DNA has received much attention recently as a long-term archival medium alternative due to its high density and durability characteristics. However, most current work has primarily focused on using DNA as a precise storage medium. In this work, we take an alternate view of DNA. Using neural-network-based compression techniques, we transform images into a latent-space representation, which we then store on DNA. By doing so, we transform DNA into an approximate image storage medium, as images generated back from DNA are only approximate representations of the original images. Using several datasets, we investigate the storage benefits of approximation, and study the impact of DNA storage errors (substitutions, indels, bias) on the quality of approximation. In doing so, we demonstrate the feasibility and potential of viewing DNA as an approximate storage medium.</description><identifier>EISSN: 2642-9357</identifier><identifier>EISBN: 1728185513</identifier><identifier>EISBN: 9781728185514</identifier><identifier>DOI: 10.1109/VCIP53242.2021.9675366</identifier><language>eng</language><publisher>IEEE</publisher><subject>approxi-mate storage ; compression ; Costs ; DNA ; DNA storage ; Image coding ; Representation learning ; Roads ; Sequential analysis ; Visual communication</subject><ispartof>2021 International Conference on Visual Communications and Image Processing (VCIP), 2021, p.01-05</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9675366$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9675366$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Franzese, Giulio</creatorcontrib><creatorcontrib>Yan, Yiqing</creatorcontrib><creatorcontrib>Serra, Giuseppe</creatorcontrib><creatorcontrib>D'Onofrio, Ivan</creatorcontrib><creatorcontrib>Appuswamy, Raja</creatorcontrib><creatorcontrib>Michiardi, Pietro</creatorcontrib><title>Generative DNA: Representation Learning for DNA-based Approximate Image Storage</title><title>2021 International Conference on Visual Communications and Image Processing (VCIP)</title><addtitle>VCIP</addtitle><description>Synthetic DNA has received much attention recently as a long-term archival medium alternative due to its high density and durability characteristics. However, most current work has primarily focused on using DNA as a precise storage medium. In this work, we take an alternate view of DNA. Using neural-network-based compression techniques, we transform images into a latent-space representation, which we then store on DNA. By doing so, we transform DNA into an approximate image storage medium, as images generated back from DNA are only approximate representations of the original images. Using several datasets, we investigate the storage benefits of approximation, and study the impact of DNA storage errors (substitutions, indels, bias) on the quality of approximation. In doing so, we demonstrate the feasibility and potential of viewing DNA as an approximate storage medium.</description><subject>approxi-mate storage</subject><subject>compression</subject><subject>Costs</subject><subject>DNA</subject><subject>DNA storage</subject><subject>Image coding</subject><subject>Representation learning</subject><subject>Roads</subject><subject>Sequential analysis</subject><subject>Visual communication</subject><issn>2642-9357</issn><isbn>1728185513</isbn><isbn>9781728185514</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj91KxDAUhKMguK77BILkBVpPkuak8a5UXQvFFf9ul9SeLBW3LWkRfXsj7tXAzDB8w9ilgFQIsFdvZfWolcxkKkGK1KLRCvGInQkjc5FrLdQxW0jMZGKVNqdsNU0fACBjIG2-YJs19RTc3H0Rv3korvkTjYEm6ufoDT2vyYW-63fcD-GvkDRuopYX4xiG727vZuLV3u2IP89DiHrOTrz7nGh10CV7vbt9Ke-TerOuyqJOOglqTjJqhPEaQQNZlCDQe_IiQoFxLWLMdd4qVBZz3RiyAhw2yiF5I9V7rpbs4n-3I6LtGCJK-Nke_qtfhQZOrw</recordid><startdate>20211205</startdate><enddate>20211205</enddate><creator>Franzese, Giulio</creator><creator>Yan, Yiqing</creator><creator>Serra, Giuseppe</creator><creator>D'Onofrio, Ivan</creator><creator>Appuswamy, Raja</creator><creator>Michiardi, Pietro</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20211205</creationdate><title>Generative DNA: Representation Learning for DNA-based Approximate Image Storage</title><author>Franzese, Giulio ; Yan, Yiqing ; Serra, Giuseppe ; D'Onofrio, Ivan ; Appuswamy, Raja ; Michiardi, Pietro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-4eb17f56050e962016ffef113207ad664eb58d3639685b7e910a6b3a6ef723c83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>approxi-mate storage</topic><topic>compression</topic><topic>Costs</topic><topic>DNA</topic><topic>DNA storage</topic><topic>Image coding</topic><topic>Representation learning</topic><topic>Roads</topic><topic>Sequential analysis</topic><topic>Visual communication</topic><toplevel>online_resources</toplevel><creatorcontrib>Franzese, Giulio</creatorcontrib><creatorcontrib>Yan, Yiqing</creatorcontrib><creatorcontrib>Serra, Giuseppe</creatorcontrib><creatorcontrib>D'Onofrio, Ivan</creatorcontrib><creatorcontrib>Appuswamy, Raja</creatorcontrib><creatorcontrib>Michiardi, Pietro</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Franzese, Giulio</au><au>Yan, Yiqing</au><au>Serra, Giuseppe</au><au>D'Onofrio, Ivan</au><au>Appuswamy, Raja</au><au>Michiardi, Pietro</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Generative DNA: Representation Learning for DNA-based Approximate Image Storage</atitle><btitle>2021 International Conference on Visual Communications and Image Processing (VCIP)</btitle><stitle>VCIP</stitle><date>2021-12-05</date><risdate>2021</risdate><spage>01</spage><epage>05</epage><pages>01-05</pages><eissn>2642-9357</eissn><eisbn>1728185513</eisbn><eisbn>9781728185514</eisbn><abstract>Synthetic DNA has received much attention recently as a long-term archival medium alternative due to its high density and durability characteristics. However, most current work has primarily focused on using DNA as a precise storage medium. In this work, we take an alternate view of DNA. Using neural-network-based compression techniques, we transform images into a latent-space representation, which we then store on DNA. By doing so, we transform DNA into an approximate image storage medium, as images generated back from DNA are only approximate representations of the original images. Using several datasets, we investigate the storage benefits of approximation, and study the impact of DNA storage errors (substitutions, indels, bias) on the quality of approximation. In doing so, we demonstrate the feasibility and potential of viewing DNA as an approximate storage medium.</abstract><pub>IEEE</pub><doi>10.1109/VCIP53242.2021.9675366</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2642-9357 |
ispartof | 2021 International Conference on Visual Communications and Image Processing (VCIP), 2021, p.01-05 |
issn | 2642-9357 |
language | eng |
recordid | cdi_ieee_primary_9675366 |
source | IEEE Xplore All Conference Series |
subjects | approxi-mate storage compression Costs DNA DNA storage Image coding Representation learning Roads Sequential analysis Visual communication |
title | Generative DNA: Representation Learning for DNA-based Approximate Image Storage |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T05%3A28%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Generative%20DNA:%20Representation%20Learning%20for%20DNA-based%20Approximate%20Image%20Storage&rft.btitle=2021%20International%20Conference%20on%20Visual%20Communications%20and%20Image%20Processing%20(VCIP)&rft.au=Franzese,%20Giulio&rft.date=2021-12-05&rft.spage=01&rft.epage=05&rft.pages=01-05&rft.eissn=2642-9357&rft_id=info:doi/10.1109/VCIP53242.2021.9675366&rft.eisbn=1728185513&rft.eisbn_list=9781728185514&rft_dat=%3Cieee_CHZPO%3E9675366%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-4eb17f56050e962016ffef113207ad664eb58d3639685b7e910a6b3a6ef723c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9675366&rfr_iscdi=true |