Loading…
A Review on Phishing Websites Revealing through Machine Learning
Phishing is a frequent assault in which unsuspecting people's unique, private, and sensitive information is stolen through fake websites. The primary objective of phishing websites'consistent resource allocators isto steal unique, private, and sensitive information such as user login passw...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 335 |
container_issue | |
container_start_page | 330 |
container_title | |
container_volume | |
creator | Singh Sengar, Alok Bhola, Abhishek Shukla, Ratnesh Kumar Gupta, Anurag |
description | Phishing is a frequent assault in which unsuspecting people's unique, private, and sensitive information is stolen through fake websites. The primary objective of phishing websites'consistent resource allocators isto steal unique, private, and sensitive information such as user login passwords and online financial transactions. Phishers construct phony websites that look and sound just like genuine things. With the advent of technology, there are protecting users significantly increased in phishing methods. It necessitates the development of an anti-phishing technology to identify phishing and protect users. Machine learning is a useful technique for combating phishing attempts. These articles were utilized to examine Machine learning for detection strategies and characteristics. |
doi_str_mv | 10.1109/SMART52563.2021.9676288 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9676288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9676288</ieee_id><sourcerecordid>9676288</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-ad1f22266496eb0365fbefeed2d7dc9cc3399842a125779e2ca280790c0699ae3</originalsourceid><addsrcrecordid>eNotkMFKw0AURUdFsNZ-gQvzA6lv3iRv5u0MxarQotSK7so0eWlGaipJVPx7W8zqwj2Hu7hKXWkYaw18_TzPFssUUzJjBNRjJkvo3JE610RpYtjC27EaoCUbW0N4okZsXc_IuTM1att3ADAICRgeqJssWsh3kJ9oV0dPVWirUG-iV1m3oZP2wMRvD1VXNbuvTRXNfb5XJJqJb-o9uFCnpd-2MupzqF6mt8vJfTx7vHuYZLM4aO262Be6RESihEnWYCgt11KKFFjYIuc8N4bZJeg1ptayYO7RgWXIgZi9mKG6_N8NIrL6bMKHb35X_QHmD1quTYM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Review on Phishing Websites Revealing through Machine Learning</title><source>IEEE Xplore All Conference Series</source><creator>Singh Sengar, Alok ; Bhola, Abhishek ; Shukla, Ratnesh Kumar ; Gupta, Anurag</creator><creatorcontrib>Singh Sengar, Alok ; Bhola, Abhishek ; Shukla, Ratnesh Kumar ; Gupta, Anurag</creatorcontrib><description>Phishing is a frequent assault in which unsuspecting people's unique, private, and sensitive information is stolen through fake websites. The primary objective of phishing websites'consistent resource allocators isto steal unique, private, and sensitive information such as user login passwords and online financial transactions. Phishers construct phony websites that look and sound just like genuine things. With the advent of technology, there are protecting users significantly increased in phishing methods. It necessitates the development of an anti-phishing technology to identify phishing and protect users. Machine learning is a useful technique for combating phishing attempts. These articles were utilized to examine Machine learning for detection strategies and characteristics.</description><identifier>ISBN: 9781665439688</identifier><identifier>ISBN: 1665439688</identifier><identifier>EISSN: 2767-7362</identifier><identifier>EISBN: 166543970X</identifier><identifier>EISBN: 166543967X</identifier><identifier>EISBN: 9781665439701</identifier><identifier>EISBN: 9781665439671</identifier><identifier>DOI: 10.1109/SMART52563.2021.9676288</identifier><language>eng</language><publisher>IEEE</publisher><subject>Detection ; Distance measurement ; Machine learning ; Machine Learning(ML) ; Passwords ; Phishing ; Phishing Websites ; Real-time systems ; Security</subject><ispartof>2021 10th International Conference on System Modeling & Advancement in Research Trends (SMART), 2021, p.330-335</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9676288$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9676288$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Singh Sengar, Alok</creatorcontrib><creatorcontrib>Bhola, Abhishek</creatorcontrib><creatorcontrib>Shukla, Ratnesh Kumar</creatorcontrib><creatorcontrib>Gupta, Anurag</creatorcontrib><title>A Review on Phishing Websites Revealing through Machine Learning</title><title>2021 10th International Conference on System Modeling & Advancement in Research Trends (SMART)</title><addtitle>SMART</addtitle><description>Phishing is a frequent assault in which unsuspecting people's unique, private, and sensitive information is stolen through fake websites. The primary objective of phishing websites'consistent resource allocators isto steal unique, private, and sensitive information such as user login passwords and online financial transactions. Phishers construct phony websites that look and sound just like genuine things. With the advent of technology, there are protecting users significantly increased in phishing methods. It necessitates the development of an anti-phishing technology to identify phishing and protect users. Machine learning is a useful technique for combating phishing attempts. These articles were utilized to examine Machine learning for detection strategies and characteristics.</description><subject>Detection</subject><subject>Distance measurement</subject><subject>Machine learning</subject><subject>Machine Learning(ML)</subject><subject>Passwords</subject><subject>Phishing</subject><subject>Phishing Websites</subject><subject>Real-time systems</subject><subject>Security</subject><issn>2767-7362</issn><isbn>9781665439688</isbn><isbn>1665439688</isbn><isbn>166543970X</isbn><isbn>166543967X</isbn><isbn>9781665439701</isbn><isbn>9781665439671</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMFKw0AURUdFsNZ-gQvzA6lv3iRv5u0MxarQotSK7so0eWlGaipJVPx7W8zqwj2Hu7hKXWkYaw18_TzPFssUUzJjBNRjJkvo3JE610RpYtjC27EaoCUbW0N4okZsXc_IuTM1att3ADAICRgeqJssWsh3kJ9oV0dPVWirUG-iV1m3oZP2wMRvD1VXNbuvTRXNfb5XJJqJb-o9uFCnpd-2MupzqF6mt8vJfTx7vHuYZLM4aO262Be6RESihEnWYCgt11KKFFjYIuc8N4bZJeg1ptayYO7RgWXIgZi9mKG6_N8NIrL6bMKHb35X_QHmD1quTYM</recordid><startdate>20211210</startdate><enddate>20211210</enddate><creator>Singh Sengar, Alok</creator><creator>Bhola, Abhishek</creator><creator>Shukla, Ratnesh Kumar</creator><creator>Gupta, Anurag</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20211210</creationdate><title>A Review on Phishing Websites Revealing through Machine Learning</title><author>Singh Sengar, Alok ; Bhola, Abhishek ; Shukla, Ratnesh Kumar ; Gupta, Anurag</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-ad1f22266496eb0365fbefeed2d7dc9cc3399842a125779e2ca280790c0699ae3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Detection</topic><topic>Distance measurement</topic><topic>Machine learning</topic><topic>Machine Learning(ML)</topic><topic>Passwords</topic><topic>Phishing</topic><topic>Phishing Websites</topic><topic>Real-time systems</topic><topic>Security</topic><toplevel>online_resources</toplevel><creatorcontrib>Singh Sengar, Alok</creatorcontrib><creatorcontrib>Bhola, Abhishek</creatorcontrib><creatorcontrib>Shukla, Ratnesh Kumar</creatorcontrib><creatorcontrib>Gupta, Anurag</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Singh Sengar, Alok</au><au>Bhola, Abhishek</au><au>Shukla, Ratnesh Kumar</au><au>Gupta, Anurag</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Review on Phishing Websites Revealing through Machine Learning</atitle><btitle>2021 10th International Conference on System Modeling & Advancement in Research Trends (SMART)</btitle><stitle>SMART</stitle><date>2021-12-10</date><risdate>2021</risdate><spage>330</spage><epage>335</epage><pages>330-335</pages><eissn>2767-7362</eissn><isbn>9781665439688</isbn><isbn>1665439688</isbn><eisbn>166543970X</eisbn><eisbn>166543967X</eisbn><eisbn>9781665439701</eisbn><eisbn>9781665439671</eisbn><abstract>Phishing is a frequent assault in which unsuspecting people's unique, private, and sensitive information is stolen through fake websites. The primary objective of phishing websites'consistent resource allocators isto steal unique, private, and sensitive information such as user login passwords and online financial transactions. Phishers construct phony websites that look and sound just like genuine things. With the advent of technology, there are protecting users significantly increased in phishing methods. It necessitates the development of an anti-phishing technology to identify phishing and protect users. Machine learning is a useful technique for combating phishing attempts. These articles were utilized to examine Machine learning for detection strategies and characteristics.</abstract><pub>IEEE</pub><doi>10.1109/SMART52563.2021.9676288</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781665439688 |
ispartof | 2021 10th International Conference on System Modeling & Advancement in Research Trends (SMART), 2021, p.330-335 |
issn | 2767-7362 |
language | eng |
recordid | cdi_ieee_primary_9676288 |
source | IEEE Xplore All Conference Series |
subjects | Detection Distance measurement Machine learning Machine Learning(ML) Passwords Phishing Phishing Websites Real-time systems Security |
title | A Review on Phishing Websites Revealing through Machine Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A06%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Review%20on%20Phishing%20Websites%20Revealing%20through%20Machine%20Learning&rft.btitle=2021%2010th%20International%20Conference%20on%20System%20Modeling%20&%20Advancement%20in%20Research%20Trends%20(SMART)&rft.au=Singh%20Sengar,%20Alok&rft.date=2021-12-10&rft.spage=330&rft.epage=335&rft.pages=330-335&rft.eissn=2767-7362&rft.isbn=9781665439688&rft.isbn_list=1665439688&rft_id=info:doi/10.1109/SMART52563.2021.9676288&rft.eisbn=166543970X&rft.eisbn_list=166543967X&rft.eisbn_list=9781665439701&rft.eisbn_list=9781665439671&rft_dat=%3Cieee_CHZPO%3E9676288%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i118t-ad1f22266496eb0365fbefeed2d7dc9cc3399842a125779e2ca280790c0699ae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9676288&rfr_iscdi=true |