Loading…

Information Flow in Markov Chains

We consider the problem of characterizing the flow of information in stochastic systems. Recently, several measures of partial information decomposition (PID) have been proposed which, for a fixed target variable, can distinguish unique, redundant, and synergistic contributions from the predictor va...

Full description

Saved in:
Bibliographic Details
Main Authors: Niu, Xueyan, Quinn, Christopher J.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3447
container_issue
container_start_page 3442
container_title
container_volume
creator Niu, Xueyan
Quinn, Christopher J.
description We consider the problem of characterizing the flow of information in stochastic systems. Recently, several measures of partial information decomposition (PID) have been proposed which, for a fixed target variable, can distinguish unique, redundant, and synergistic contributions from the predictor variables. We study how each of those partial informations travel in a Markov chain, entering at one variable, passing through several variables, and eventually exiting downstream. Our work is agnostic to specific partial information decomposition (PID) measures. We investigate partial information flow among variables relating to overflow events in a river system.
doi_str_mv 10.1109/CDC45484.2021.9683569
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9683569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9683569</ieee_id><sourcerecordid>9683569</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-5c1a4f65861133fd7846e632e11133ab4e4ef6517f690ee81593e855612d13cf3</originalsourceid><addsrcrecordid>eNotj9FKAzEQRaMgWGu_QIT1A3bNZDKT5FGi1UJLX_S5xHaC0XZXdovi32uxT5fDgQNXqWvQDYAOt_E-WrLeNkYbaAJ7JA4nahKcB2ayyBToVI0MOa4NOn2uLobhXWsMweJI3cza3PW7tC9dW0233XdV2mqR-o_uq4pvqbTDpTrLaTvI5Lhj9TJ9eI5P9Xz5OIt387oYjfua1pBsZvIMgJg3zlsWRiNw4PRqxcqfBpc5aBEPFFA8EYPZAK4zjtXVf7eIyOqzL7vU_6yOj_AXTT89fA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Information Flow in Markov Chains</title><source>IEEE Xplore All Conference Series</source><creator>Niu, Xueyan ; Quinn, Christopher J.</creator><creatorcontrib>Niu, Xueyan ; Quinn, Christopher J.</creatorcontrib><description>We consider the problem of characterizing the flow of information in stochastic systems. Recently, several measures of partial information decomposition (PID) have been proposed which, for a fixed target variable, can distinguish unique, redundant, and synergistic contributions from the predictor variables. We study how each of those partial informations travel in a Markov chain, entering at one variable, passing through several variables, and eventually exiting downstream. Our work is agnostic to specific partial information decomposition (PID) measures. We investigate partial information flow among variables relating to overflow events in a river system.</description><identifier>EISSN: 2576-2370</identifier><identifier>EISBN: 9781665436595</identifier><identifier>EISBN: 166543659X</identifier><identifier>DOI: 10.1109/CDC45484.2021.9683569</identifier><language>eng</language><publisher>IEEE</publisher><subject>Conferences ; Markov processes ; Mutual information ; Rivers ; Stochastic systems ; Topology</subject><ispartof>2021 60th IEEE Conference on Decision and Control (CDC), 2021, p.3442-3447</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9683569$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27923,54553,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9683569$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Niu, Xueyan</creatorcontrib><creatorcontrib>Quinn, Christopher J.</creatorcontrib><title>Information Flow in Markov Chains</title><title>2021 60th IEEE Conference on Decision and Control (CDC)</title><addtitle>CDC</addtitle><description>We consider the problem of characterizing the flow of information in stochastic systems. Recently, several measures of partial information decomposition (PID) have been proposed which, for a fixed target variable, can distinguish unique, redundant, and synergistic contributions from the predictor variables. We study how each of those partial informations travel in a Markov chain, entering at one variable, passing through several variables, and eventually exiting downstream. Our work is agnostic to specific partial information decomposition (PID) measures. We investigate partial information flow among variables relating to overflow events in a river system.</description><subject>Conferences</subject><subject>Markov processes</subject><subject>Mutual information</subject><subject>Rivers</subject><subject>Stochastic systems</subject><subject>Topology</subject><issn>2576-2370</issn><isbn>9781665436595</isbn><isbn>166543659X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj9FKAzEQRaMgWGu_QIT1A3bNZDKT5FGi1UJLX_S5xHaC0XZXdovi32uxT5fDgQNXqWvQDYAOt_E-WrLeNkYbaAJ7JA4nahKcB2ayyBToVI0MOa4NOn2uLobhXWsMweJI3cza3PW7tC9dW0233XdV2mqR-o_uq4pvqbTDpTrLaTvI5Lhj9TJ9eI5P9Xz5OIt387oYjfua1pBsZvIMgJg3zlsWRiNw4PRqxcqfBpc5aBEPFFA8EYPZAK4zjtXVf7eIyOqzL7vU_6yOj_AXTT89fA</recordid><startdate>20211214</startdate><enddate>20211214</enddate><creator>Niu, Xueyan</creator><creator>Quinn, Christopher J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20211214</creationdate><title>Information Flow in Markov Chains</title><author>Niu, Xueyan ; Quinn, Christopher J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-5c1a4f65861133fd7846e632e11133ab4e4ef6517f690ee81593e855612d13cf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Conferences</topic><topic>Markov processes</topic><topic>Mutual information</topic><topic>Rivers</topic><topic>Stochastic systems</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Niu, Xueyan</creatorcontrib><creatorcontrib>Quinn, Christopher J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Niu, Xueyan</au><au>Quinn, Christopher J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Information Flow in Markov Chains</atitle><btitle>2021 60th IEEE Conference on Decision and Control (CDC)</btitle><stitle>CDC</stitle><date>2021-12-14</date><risdate>2021</risdate><spage>3442</spage><epage>3447</epage><pages>3442-3447</pages><eissn>2576-2370</eissn><eisbn>9781665436595</eisbn><eisbn>166543659X</eisbn><abstract>We consider the problem of characterizing the flow of information in stochastic systems. Recently, several measures of partial information decomposition (PID) have been proposed which, for a fixed target variable, can distinguish unique, redundant, and synergistic contributions from the predictor variables. We study how each of those partial informations travel in a Markov chain, entering at one variable, passing through several variables, and eventually exiting downstream. Our work is agnostic to specific partial information decomposition (PID) measures. We investigate partial information flow among variables relating to overflow events in a river system.</abstract><pub>IEEE</pub><doi>10.1109/CDC45484.2021.9683569</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2576-2370
ispartof 2021 60th IEEE Conference on Decision and Control (CDC), 2021, p.3442-3447
issn 2576-2370
language eng
recordid cdi_ieee_primary_9683569
source IEEE Xplore All Conference Series
subjects Conferences
Markov processes
Mutual information
Rivers
Stochastic systems
Topology
title Information Flow in Markov Chains
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A36%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Information%20Flow%20in%20Markov%20Chains&rft.btitle=2021%2060th%20IEEE%20Conference%20on%20Decision%20and%20Control%20(CDC)&rft.au=Niu,%20Xueyan&rft.date=2021-12-14&rft.spage=3442&rft.epage=3447&rft.pages=3442-3447&rft.eissn=2576-2370&rft_id=info:doi/10.1109/CDC45484.2021.9683569&rft.eisbn=9781665436595&rft.eisbn_list=166543659X&rft_dat=%3Cieee_CHZPO%3E9683569%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-5c1a4f65861133fd7846e632e11133ab4e4ef6517f690ee81593e855612d13cf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9683569&rfr_iscdi=true