Loading…
Information Flow in Markov Chains
We consider the problem of characterizing the flow of information in stochastic systems. Recently, several measures of partial information decomposition (PID) have been proposed which, for a fixed target variable, can distinguish unique, redundant, and synergistic contributions from the predictor va...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3447 |
container_issue | |
container_start_page | 3442 |
container_title | |
container_volume | |
creator | Niu, Xueyan Quinn, Christopher J. |
description | We consider the problem of characterizing the flow of information in stochastic systems. Recently, several measures of partial information decomposition (PID) have been proposed which, for a fixed target variable, can distinguish unique, redundant, and synergistic contributions from the predictor variables. We study how each of those partial informations travel in a Markov chain, entering at one variable, passing through several variables, and eventually exiting downstream. Our work is agnostic to specific partial information decomposition (PID) measures. We investigate partial information flow among variables relating to overflow events in a river system. |
doi_str_mv | 10.1109/CDC45484.2021.9683569 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9683569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9683569</ieee_id><sourcerecordid>9683569</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-5c1a4f65861133fd7846e632e11133ab4e4ef6517f690ee81593e855612d13cf3</originalsourceid><addsrcrecordid>eNotj9FKAzEQRaMgWGu_QIT1A3bNZDKT5FGi1UJLX_S5xHaC0XZXdovi32uxT5fDgQNXqWvQDYAOt_E-WrLeNkYbaAJ7JA4nahKcB2ayyBToVI0MOa4NOn2uLobhXWsMweJI3cza3PW7tC9dW0233XdV2mqR-o_uq4pvqbTDpTrLaTvI5Lhj9TJ9eI5P9Xz5OIt387oYjfua1pBsZvIMgJg3zlsWRiNw4PRqxcqfBpc5aBEPFFA8EYPZAK4zjtXVf7eIyOqzL7vU_6yOj_AXTT89fA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Information Flow in Markov Chains</title><source>IEEE Xplore All Conference Series</source><creator>Niu, Xueyan ; Quinn, Christopher J.</creator><creatorcontrib>Niu, Xueyan ; Quinn, Christopher J.</creatorcontrib><description>We consider the problem of characterizing the flow of information in stochastic systems. Recently, several measures of partial information decomposition (PID) have been proposed which, for a fixed target variable, can distinguish unique, redundant, and synergistic contributions from the predictor variables. We study how each of those partial informations travel in a Markov chain, entering at one variable, passing through several variables, and eventually exiting downstream. Our work is agnostic to specific partial information decomposition (PID) measures. We investigate partial information flow among variables relating to overflow events in a river system.</description><identifier>EISSN: 2576-2370</identifier><identifier>EISBN: 9781665436595</identifier><identifier>EISBN: 166543659X</identifier><identifier>DOI: 10.1109/CDC45484.2021.9683569</identifier><language>eng</language><publisher>IEEE</publisher><subject>Conferences ; Markov processes ; Mutual information ; Rivers ; Stochastic systems ; Topology</subject><ispartof>2021 60th IEEE Conference on Decision and Control (CDC), 2021, p.3442-3447</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9683569$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27923,54553,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9683569$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Niu, Xueyan</creatorcontrib><creatorcontrib>Quinn, Christopher J.</creatorcontrib><title>Information Flow in Markov Chains</title><title>2021 60th IEEE Conference on Decision and Control (CDC)</title><addtitle>CDC</addtitle><description>We consider the problem of characterizing the flow of information in stochastic systems. Recently, several measures of partial information decomposition (PID) have been proposed which, for a fixed target variable, can distinguish unique, redundant, and synergistic contributions from the predictor variables. We study how each of those partial informations travel in a Markov chain, entering at one variable, passing through several variables, and eventually exiting downstream. Our work is agnostic to specific partial information decomposition (PID) measures. We investigate partial information flow among variables relating to overflow events in a river system.</description><subject>Conferences</subject><subject>Markov processes</subject><subject>Mutual information</subject><subject>Rivers</subject><subject>Stochastic systems</subject><subject>Topology</subject><issn>2576-2370</issn><isbn>9781665436595</isbn><isbn>166543659X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj9FKAzEQRaMgWGu_QIT1A3bNZDKT5FGi1UJLX_S5xHaC0XZXdovi32uxT5fDgQNXqWvQDYAOt_E-WrLeNkYbaAJ7JA4nahKcB2ayyBToVI0MOa4NOn2uLobhXWsMweJI3cza3PW7tC9dW0233XdV2mqR-o_uq4pvqbTDpTrLaTvI5Lhj9TJ9eI5P9Xz5OIt387oYjfua1pBsZvIMgJg3zlsWRiNw4PRqxcqfBpc5aBEPFFA8EYPZAK4zjtXVf7eIyOqzL7vU_6yOj_AXTT89fA</recordid><startdate>20211214</startdate><enddate>20211214</enddate><creator>Niu, Xueyan</creator><creator>Quinn, Christopher J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20211214</creationdate><title>Information Flow in Markov Chains</title><author>Niu, Xueyan ; Quinn, Christopher J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-5c1a4f65861133fd7846e632e11133ab4e4ef6517f690ee81593e855612d13cf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Conferences</topic><topic>Markov processes</topic><topic>Mutual information</topic><topic>Rivers</topic><topic>Stochastic systems</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Niu, Xueyan</creatorcontrib><creatorcontrib>Quinn, Christopher J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Niu, Xueyan</au><au>Quinn, Christopher J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Information Flow in Markov Chains</atitle><btitle>2021 60th IEEE Conference on Decision and Control (CDC)</btitle><stitle>CDC</stitle><date>2021-12-14</date><risdate>2021</risdate><spage>3442</spage><epage>3447</epage><pages>3442-3447</pages><eissn>2576-2370</eissn><eisbn>9781665436595</eisbn><eisbn>166543659X</eisbn><abstract>We consider the problem of characterizing the flow of information in stochastic systems. Recently, several measures of partial information decomposition (PID) have been proposed which, for a fixed target variable, can distinguish unique, redundant, and synergistic contributions from the predictor variables. We study how each of those partial informations travel in a Markov chain, entering at one variable, passing through several variables, and eventually exiting downstream. Our work is agnostic to specific partial information decomposition (PID) measures. We investigate partial information flow among variables relating to overflow events in a river system.</abstract><pub>IEEE</pub><doi>10.1109/CDC45484.2021.9683569</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2576-2370 |
ispartof | 2021 60th IEEE Conference on Decision and Control (CDC), 2021, p.3442-3447 |
issn | 2576-2370 |
language | eng |
recordid | cdi_ieee_primary_9683569 |
source | IEEE Xplore All Conference Series |
subjects | Conferences Markov processes Mutual information Rivers Stochastic systems Topology |
title | Information Flow in Markov Chains |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A36%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Information%20Flow%20in%20Markov%20Chains&rft.btitle=2021%2060th%20IEEE%20Conference%20on%20Decision%20and%20Control%20(CDC)&rft.au=Niu,%20Xueyan&rft.date=2021-12-14&rft.spage=3442&rft.epage=3447&rft.pages=3442-3447&rft.eissn=2576-2370&rft_id=info:doi/10.1109/CDC45484.2021.9683569&rft.eisbn=9781665436595&rft.eisbn_list=166543659X&rft_dat=%3Cieee_CHZPO%3E9683569%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-5c1a4f65861133fd7846e632e11133ab4e4ef6517f690ee81593e855612d13cf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9683569&rfr_iscdi=true |