Loading…

Risk-Bounded Control with Kalman Filtering and Stochastic Barrier Functions

In this paper, we study Stochastic Control Barrier Functions (SCBFs) to enable the design of probabilistic safe real-time controllers in presence of uncertainties and based on noisy measurements. Our goal is to design controllers that bound the probability of a system failure in finite-time to a giv...

Full description

Saved in:
Bibliographic Details
Main Authors: Yaghoubi, Shakiba, Fainekos, Georgios, Yamaguchi, Tomoya, Prokhorov, Danil, Hoxha, Bardh
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5219
container_issue
container_start_page 5213
container_title
container_volume
creator Yaghoubi, Shakiba
Fainekos, Georgios
Yamaguchi, Tomoya
Prokhorov, Danil
Hoxha, Bardh
description In this paper, we study Stochastic Control Barrier Functions (SCBFs) to enable the design of probabilistic safe real-time controllers in presence of uncertainties and based on noisy measurements. Our goal is to design controllers that bound the probability of a system failure in finite-time to a given desired value. To that end, we first estimate the system states from the noisy measurements using an Extended Kalman filter, and compute confidence intervals on the filtering errors. Then, we account for filtering errors and derive sufficient conditions on the control input based on the estimated states to bound the probability that the real states of the system enter an unsafe region within a finite time interval. We show that these sufficient conditions are linear constraints on the control input, and, hence, they can be used in tractable optimization problems to achieve safety, in addition to other properties like reachability, and stability. Our approach is evaluated using a simulation of a lane-changing scenario on a highway with dense traffic.
doi_str_mv 10.1109/CDC45484.2021.9683756
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9683756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9683756</ieee_id><sourcerecordid>9683756</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-d50332c67880b428498296937daec332470d34f47c4e903653d7f2d20ad49a413</originalsourceid><addsrcrecordid>eNotj8tKAzEUQKMgWGu_QIT8wIxJ7s1raUer0oLgY13iJGOj04xkUqR_b8GuzuLAgUPINWc158zeNHcNSjRYCyZ4bZUBLdUJmVltuFISQUkrT8lESK0qAZqdk4tx_GIMrEWYkOVLHL-r-bBLPnjaDKnkoae_sWzo0vVbl-gi9iXkmD6pS56-lqHduLHEls5dzjFkutiltsQhjZfkrHP9GGZHTsn74v6teaxWzw9Pze2qioJBqbxkAKJV2hj2gcKgNcIqC9q70B4MauYBO9QtBssOA-B1J7xgzqN1yGFKrv67MYSw_slx6_J-fXyHPwN-TOo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Risk-Bounded Control with Kalman Filtering and Stochastic Barrier Functions</title><source>IEEE Xplore All Conference Series</source><creator>Yaghoubi, Shakiba ; Fainekos, Georgios ; Yamaguchi, Tomoya ; Prokhorov, Danil ; Hoxha, Bardh</creator><creatorcontrib>Yaghoubi, Shakiba ; Fainekos, Georgios ; Yamaguchi, Tomoya ; Prokhorov, Danil ; Hoxha, Bardh</creatorcontrib><description>In this paper, we study Stochastic Control Barrier Functions (SCBFs) to enable the design of probabilistic safe real-time controllers in presence of uncertainties and based on noisy measurements. Our goal is to design controllers that bound the probability of a system failure in finite-time to a given desired value. To that end, we first estimate the system states from the noisy measurements using an Extended Kalman filter, and compute confidence intervals on the filtering errors. Then, we account for filtering errors and derive sufficient conditions on the control input based on the estimated states to bound the probability that the real states of the system enter an unsafe region within a finite time interval. We show that these sufficient conditions are linear constraints on the control input, and, hence, they can be used in tractable optimization problems to achieve safety, in addition to other properties like reachability, and stability. Our approach is evaluated using a simulation of a lane-changing scenario on a highway with dense traffic.</description><identifier>EISSN: 2576-2370</identifier><identifier>EISBN: 9781665436595</identifier><identifier>EISBN: 166543659X</identifier><identifier>DOI: 10.1109/CDC45484.2021.9683756</identifier><language>eng</language><publisher>IEEE</publisher><subject>Barrier Function ; Filtering ; Kalman Filter ; Measurement uncertainty ; Probabilistic logic ; Real-time systems ; Road transportation ; Robotics ; Sufficient conditions ; Uncertainty</subject><ispartof>2021 60th IEEE Conference on Decision and Control (CDC), 2021, p.5213-5219</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9683756$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27904,54533,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9683756$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yaghoubi, Shakiba</creatorcontrib><creatorcontrib>Fainekos, Georgios</creatorcontrib><creatorcontrib>Yamaguchi, Tomoya</creatorcontrib><creatorcontrib>Prokhorov, Danil</creatorcontrib><creatorcontrib>Hoxha, Bardh</creatorcontrib><title>Risk-Bounded Control with Kalman Filtering and Stochastic Barrier Functions</title><title>2021 60th IEEE Conference on Decision and Control (CDC)</title><addtitle>CDC</addtitle><description>In this paper, we study Stochastic Control Barrier Functions (SCBFs) to enable the design of probabilistic safe real-time controllers in presence of uncertainties and based on noisy measurements. Our goal is to design controllers that bound the probability of a system failure in finite-time to a given desired value. To that end, we first estimate the system states from the noisy measurements using an Extended Kalman filter, and compute confidence intervals on the filtering errors. Then, we account for filtering errors and derive sufficient conditions on the control input based on the estimated states to bound the probability that the real states of the system enter an unsafe region within a finite time interval. We show that these sufficient conditions are linear constraints on the control input, and, hence, they can be used in tractable optimization problems to achieve safety, in addition to other properties like reachability, and stability. Our approach is evaluated using a simulation of a lane-changing scenario on a highway with dense traffic.</description><subject>Barrier Function</subject><subject>Filtering</subject><subject>Kalman Filter</subject><subject>Measurement uncertainty</subject><subject>Probabilistic logic</subject><subject>Real-time systems</subject><subject>Road transportation</subject><subject>Robotics</subject><subject>Sufficient conditions</subject><subject>Uncertainty</subject><issn>2576-2370</issn><isbn>9781665436595</isbn><isbn>166543659X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tKAzEUQKMgWGu_QIT8wIxJ7s1raUer0oLgY13iJGOj04xkUqR_b8GuzuLAgUPINWc158zeNHcNSjRYCyZ4bZUBLdUJmVltuFISQUkrT8lESK0qAZqdk4tx_GIMrEWYkOVLHL-r-bBLPnjaDKnkoae_sWzo0vVbl-gi9iXkmD6pS56-lqHduLHEls5dzjFkutiltsQhjZfkrHP9GGZHTsn74v6teaxWzw9Pze2qioJBqbxkAKJV2hj2gcKgNcIqC9q70B4MauYBO9QtBssOA-B1J7xgzqN1yGFKrv67MYSw_slx6_J-fXyHPwN-TOo</recordid><startdate>20211214</startdate><enddate>20211214</enddate><creator>Yaghoubi, Shakiba</creator><creator>Fainekos, Georgios</creator><creator>Yamaguchi, Tomoya</creator><creator>Prokhorov, Danil</creator><creator>Hoxha, Bardh</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20211214</creationdate><title>Risk-Bounded Control with Kalman Filtering and Stochastic Barrier Functions</title><author>Yaghoubi, Shakiba ; Fainekos, Georgios ; Yamaguchi, Tomoya ; Prokhorov, Danil ; Hoxha, Bardh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-d50332c67880b428498296937daec332470d34f47c4e903653d7f2d20ad49a413</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Barrier Function</topic><topic>Filtering</topic><topic>Kalman Filter</topic><topic>Measurement uncertainty</topic><topic>Probabilistic logic</topic><topic>Real-time systems</topic><topic>Road transportation</topic><topic>Robotics</topic><topic>Sufficient conditions</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Yaghoubi, Shakiba</creatorcontrib><creatorcontrib>Fainekos, Georgios</creatorcontrib><creatorcontrib>Yamaguchi, Tomoya</creatorcontrib><creatorcontrib>Prokhorov, Danil</creatorcontrib><creatorcontrib>Hoxha, Bardh</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yaghoubi, Shakiba</au><au>Fainekos, Georgios</au><au>Yamaguchi, Tomoya</au><au>Prokhorov, Danil</au><au>Hoxha, Bardh</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Risk-Bounded Control with Kalman Filtering and Stochastic Barrier Functions</atitle><btitle>2021 60th IEEE Conference on Decision and Control (CDC)</btitle><stitle>CDC</stitle><date>2021-12-14</date><risdate>2021</risdate><spage>5213</spage><epage>5219</epage><pages>5213-5219</pages><eissn>2576-2370</eissn><eisbn>9781665436595</eisbn><eisbn>166543659X</eisbn><abstract>In this paper, we study Stochastic Control Barrier Functions (SCBFs) to enable the design of probabilistic safe real-time controllers in presence of uncertainties and based on noisy measurements. Our goal is to design controllers that bound the probability of a system failure in finite-time to a given desired value. To that end, we first estimate the system states from the noisy measurements using an Extended Kalman filter, and compute confidence intervals on the filtering errors. Then, we account for filtering errors and derive sufficient conditions on the control input based on the estimated states to bound the probability that the real states of the system enter an unsafe region within a finite time interval. We show that these sufficient conditions are linear constraints on the control input, and, hence, they can be used in tractable optimization problems to achieve safety, in addition to other properties like reachability, and stability. Our approach is evaluated using a simulation of a lane-changing scenario on a highway with dense traffic.</abstract><pub>IEEE</pub><doi>10.1109/CDC45484.2021.9683756</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2576-2370
ispartof 2021 60th IEEE Conference on Decision and Control (CDC), 2021, p.5213-5219
issn 2576-2370
language eng
recordid cdi_ieee_primary_9683756
source IEEE Xplore All Conference Series
subjects Barrier Function
Filtering
Kalman Filter
Measurement uncertainty
Probabilistic logic
Real-time systems
Road transportation
Robotics
Sufficient conditions
Uncertainty
title Risk-Bounded Control with Kalman Filtering and Stochastic Barrier Functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A37%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Risk-Bounded%20Control%20with%20Kalman%20Filtering%20and%20Stochastic%20Barrier%20Functions&rft.btitle=2021%2060th%20IEEE%20Conference%20on%20Decision%20and%20Control%20(CDC)&rft.au=Yaghoubi,%20Shakiba&rft.date=2021-12-14&rft.spage=5213&rft.epage=5219&rft.pages=5213-5219&rft.eissn=2576-2370&rft_id=info:doi/10.1109/CDC45484.2021.9683756&rft.eisbn=9781665436595&rft.eisbn_list=166543659X&rft_dat=%3Cieee_CHZPO%3E9683756%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-d50332c67880b428498296937daec332470d34f47c4e903653d7f2d20ad49a413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9683756&rfr_iscdi=true