Loading…

DroneSegNet: Robust Aerial Semantic Segmentation for UAV-Based IoT Applications

Unmanned Aerial Vehicles (UAVs) are the promising "Flying IoT" devices of the future, which can be equipped with various sensors and cognitive capabilities to perform numerous tasks related to remote sensing, search and rescue operations, object tracking, segmentation of roads and building...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on vehicular technology 2022-04, Vol.71 (4), p.4277-4286
Main Authors: Chakravarthy, Anirudh S., Sinha, Soumendu, Narang, Pratik, Mandal, Murari, Chamola, Vinay, Yu, F. Richard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-4df03bce20eeab6b97c7978ab803ef90671b64d756caa0fd7d72649a2937ff133
cites cdi_FETCH-LOGICAL-c291t-4df03bce20eeab6b97c7978ab803ef90671b64d756caa0fd7d72649a2937ff133
container_end_page 4286
container_issue 4
container_start_page 4277
container_title IEEE transactions on vehicular technology
container_volume 71
creator Chakravarthy, Anirudh S.
Sinha, Soumendu
Narang, Pratik
Mandal, Murari
Chamola, Vinay
Yu, F. Richard
description Unmanned Aerial Vehicles (UAVs) are the promising "Flying IoT" devices of the future, which can be equipped with various sensors and cognitive capabilities to perform numerous tasks related to remote sensing, search and rescue operations, object tracking, segmentation of roads and buildings, surveillance, etc. However, these AI-driven tasks require heavy computation and may lead to suboptimal performance with embedded processors on a power-constrained battery-operated drone. This work proposes a novel deep learning approach for performing robust semantic segmentation of aerial scenes captured by UAVs. In our setup, the power-constrained drone is used only for data collection, while the computationally intensive tasks are offloaded to a GPU cloud server. Our architecture performs robust semantic segmentation by learning the segmentation maps from jointly utilizing of aerial scenes along with the respective "elevation maps" in a semi-supervised approach. We propose a three-tier deep learning architecture, wherein the first module aims at preliminary feature extraction from aerial scenes using a backbone feature extractor. The second module captures the spatial dependency between the aerial scenes and their respective elevation maps to obtain better semantic information, which is achieved by a bi-directional LSTM. The third module is aimed at enhancing the performance of semantic segmentation through a semi-supervised approach with an encoder to generate segmentation maps and a decoder to reconstruct feature maps. This semi-supervised feature learning ensures robust extraction along with scalability. The proposed architecture was validated on real-world aerial datasets and achieves state-of-the-art results for aerial image segmentation.
doi_str_mv 10.1109/TVT.2022.3144358
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9689963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9689963</ieee_id><sourcerecordid>2659346221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-4df03bce20eeab6b97c7978ab803ef90671b64d756caa0fd7d72649a2937ff133</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpeA59T9ym7GW_wuFAs27TVsktmS0mbjbnrw35va4mlmmOedgYeQW0YnjFF4yFf5hFPOJ4JJKZL0jIwYCIhBJHBORpSyNIZEJpfkKoTNMEoJbETmL961uMD1J_aP0Zcr96GPMvSN2UYL3Jm2b6qhWe-w7U3fuDayzkfLbBU_mYB1NHV5lHXdtqn-tuGaXFizDXhzqmOyfHvNnz_i2fx9-pzN4ooD62NZWyrKCjlFNKUqQVcadGrKlAq0QJVmpZK1TlRlDLW1rjVXEgwHoa1lQozJ_fFu5933HkNfbNzet8PLgqsEhFScs4GiR6ryLgSPtuh8szP-p2C0OGgrBm3FQVtx0jZE7o6RBhH_cVApgBLiF2kSaEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2659346221</pqid></control><display><type>article</type><title>DroneSegNet: Robust Aerial Semantic Segmentation for UAV-Based IoT Applications</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Chakravarthy, Anirudh S. ; Sinha, Soumendu ; Narang, Pratik ; Mandal, Murari ; Chamola, Vinay ; Yu, F. Richard</creator><creatorcontrib>Chakravarthy, Anirudh S. ; Sinha, Soumendu ; Narang, Pratik ; Mandal, Murari ; Chamola, Vinay ; Yu, F. Richard</creatorcontrib><description>Unmanned Aerial Vehicles (UAVs) are the promising "Flying IoT" devices of the future, which can be equipped with various sensors and cognitive capabilities to perform numerous tasks related to remote sensing, search and rescue operations, object tracking, segmentation of roads and buildings, surveillance, etc. However, these AI-driven tasks require heavy computation and may lead to suboptimal performance with embedded processors on a power-constrained battery-operated drone. This work proposes a novel deep learning approach for performing robust semantic segmentation of aerial scenes captured by UAVs. In our setup, the power-constrained drone is used only for data collection, while the computationally intensive tasks are offloaded to a GPU cloud server. Our architecture performs robust semantic segmentation by learning the segmentation maps from jointly utilizing of aerial scenes along with the respective "elevation maps" in a semi-supervised approach. We propose a three-tier deep learning architecture, wherein the first module aims at preliminary feature extraction from aerial scenes using a backbone feature extractor. The second module captures the spatial dependency between the aerial scenes and their respective elevation maps to obtain better semantic information, which is achieved by a bi-directional LSTM. The third module is aimed at enhancing the performance of semantic segmentation through a semi-supervised approach with an encoder to generate segmentation maps and a decoder to reconstruct feature maps. This semi-supervised feature learning ensures robust extraction along with scalability. The proposed architecture was validated on real-world aerial datasets and achieves state-of-the-art results for aerial image segmentation.</description><identifier>ISSN: 0018-9545</identifier><identifier>EISSN: 1939-9359</identifier><identifier>DOI: 10.1109/TVT.2022.3144358</identifier><identifier>CODEN: ITVTAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>aerial scene analysis ; Cloud computing ; Coders ; Computer architecture ; Deep learning ; Drone aircraft ; Drones ; Feature extraction ; Feature maps ; Image segmentation ; Internet of Things ; IoT ; Machine learning ; Modules ; Remote sensing ; Remote sensors ; Rescue operations ; Robustness ; Search and rescue missions ; Semantic segmentation ; Semantics ; UAVs ; Unmanned aerial vehicles</subject><ispartof>IEEE transactions on vehicular technology, 2022-04, Vol.71 (4), p.4277-4286</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-4df03bce20eeab6b97c7978ab803ef90671b64d756caa0fd7d72649a2937ff133</citedby><cites>FETCH-LOGICAL-c291t-4df03bce20eeab6b97c7978ab803ef90671b64d756caa0fd7d72649a2937ff133</cites><orcidid>0000-0002-0157-0967 ; 0000-0002-8400-6762 ; 0000-0002-6730-3060 ; 0000-0003-1006-7594 ; 0000-0003-3088-7637 ; 0000-0003-1865-3512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9689963$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Chakravarthy, Anirudh S.</creatorcontrib><creatorcontrib>Sinha, Soumendu</creatorcontrib><creatorcontrib>Narang, Pratik</creatorcontrib><creatorcontrib>Mandal, Murari</creatorcontrib><creatorcontrib>Chamola, Vinay</creatorcontrib><creatorcontrib>Yu, F. Richard</creatorcontrib><title>DroneSegNet: Robust Aerial Semantic Segmentation for UAV-Based IoT Applications</title><title>IEEE transactions on vehicular technology</title><addtitle>TVT</addtitle><description>Unmanned Aerial Vehicles (UAVs) are the promising "Flying IoT" devices of the future, which can be equipped with various sensors and cognitive capabilities to perform numerous tasks related to remote sensing, search and rescue operations, object tracking, segmentation of roads and buildings, surveillance, etc. However, these AI-driven tasks require heavy computation and may lead to suboptimal performance with embedded processors on a power-constrained battery-operated drone. This work proposes a novel deep learning approach for performing robust semantic segmentation of aerial scenes captured by UAVs. In our setup, the power-constrained drone is used only for data collection, while the computationally intensive tasks are offloaded to a GPU cloud server. Our architecture performs robust semantic segmentation by learning the segmentation maps from jointly utilizing of aerial scenes along with the respective "elevation maps" in a semi-supervised approach. We propose a three-tier deep learning architecture, wherein the first module aims at preliminary feature extraction from aerial scenes using a backbone feature extractor. The second module captures the spatial dependency between the aerial scenes and their respective elevation maps to obtain better semantic information, which is achieved by a bi-directional LSTM. The third module is aimed at enhancing the performance of semantic segmentation through a semi-supervised approach with an encoder to generate segmentation maps and a decoder to reconstruct feature maps. This semi-supervised feature learning ensures robust extraction along with scalability. The proposed architecture was validated on real-world aerial datasets and achieves state-of-the-art results for aerial image segmentation.</description><subject>aerial scene analysis</subject><subject>Cloud computing</subject><subject>Coders</subject><subject>Computer architecture</subject><subject>Deep learning</subject><subject>Drone aircraft</subject><subject>Drones</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Image segmentation</subject><subject>Internet of Things</subject><subject>IoT</subject><subject>Machine learning</subject><subject>Modules</subject><subject>Remote sensing</subject><subject>Remote sensors</subject><subject>Rescue operations</subject><subject>Robustness</subject><subject>Search and rescue missions</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>UAVs</subject><subject>Unmanned aerial vehicles</subject><issn>0018-9545</issn><issn>1939-9359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFbvgpeA59T9ym7GW_wuFAs27TVsktmS0mbjbnrw35va4mlmmOedgYeQW0YnjFF4yFf5hFPOJ4JJKZL0jIwYCIhBJHBORpSyNIZEJpfkKoTNMEoJbETmL961uMD1J_aP0Zcr96GPMvSN2UYL3Jm2b6qhWe-w7U3fuDayzkfLbBU_mYB1NHV5lHXdtqn-tuGaXFizDXhzqmOyfHvNnz_i2fx9-pzN4ooD62NZWyrKCjlFNKUqQVcadGrKlAq0QJVmpZK1TlRlDLW1rjVXEgwHoa1lQozJ_fFu5933HkNfbNzet8PLgqsEhFScs4GiR6ryLgSPtuh8szP-p2C0OGgrBm3FQVtx0jZE7o6RBhH_cVApgBLiF2kSaEQ</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Chakravarthy, Anirudh S.</creator><creator>Sinha, Soumendu</creator><creator>Narang, Pratik</creator><creator>Mandal, Murari</creator><creator>Chamola, Vinay</creator><creator>Yu, F. Richard</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0157-0967</orcidid><orcidid>https://orcid.org/0000-0002-8400-6762</orcidid><orcidid>https://orcid.org/0000-0002-6730-3060</orcidid><orcidid>https://orcid.org/0000-0003-1006-7594</orcidid><orcidid>https://orcid.org/0000-0003-3088-7637</orcidid><orcidid>https://orcid.org/0000-0003-1865-3512</orcidid></search><sort><creationdate>20220401</creationdate><title>DroneSegNet: Robust Aerial Semantic Segmentation for UAV-Based IoT Applications</title><author>Chakravarthy, Anirudh S. ; Sinha, Soumendu ; Narang, Pratik ; Mandal, Murari ; Chamola, Vinay ; Yu, F. Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-4df03bce20eeab6b97c7978ab803ef90671b64d756caa0fd7d72649a2937ff133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>aerial scene analysis</topic><topic>Cloud computing</topic><topic>Coders</topic><topic>Computer architecture</topic><topic>Deep learning</topic><topic>Drone aircraft</topic><topic>Drones</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Image segmentation</topic><topic>Internet of Things</topic><topic>IoT</topic><topic>Machine learning</topic><topic>Modules</topic><topic>Remote sensing</topic><topic>Remote sensors</topic><topic>Rescue operations</topic><topic>Robustness</topic><topic>Search and rescue missions</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>UAVs</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakravarthy, Anirudh S.</creatorcontrib><creatorcontrib>Sinha, Soumendu</creatorcontrib><creatorcontrib>Narang, Pratik</creatorcontrib><creatorcontrib>Mandal, Murari</creatorcontrib><creatorcontrib>Chamola, Vinay</creatorcontrib><creatorcontrib>Yu, F. Richard</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on vehicular technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakravarthy, Anirudh S.</au><au>Sinha, Soumendu</au><au>Narang, Pratik</au><au>Mandal, Murari</au><au>Chamola, Vinay</au><au>Yu, F. Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DroneSegNet: Robust Aerial Semantic Segmentation for UAV-Based IoT Applications</atitle><jtitle>IEEE transactions on vehicular technology</jtitle><stitle>TVT</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>71</volume><issue>4</issue><spage>4277</spage><epage>4286</epage><pages>4277-4286</pages><issn>0018-9545</issn><eissn>1939-9359</eissn><coden>ITVTAB</coden><abstract>Unmanned Aerial Vehicles (UAVs) are the promising "Flying IoT" devices of the future, which can be equipped with various sensors and cognitive capabilities to perform numerous tasks related to remote sensing, search and rescue operations, object tracking, segmentation of roads and buildings, surveillance, etc. However, these AI-driven tasks require heavy computation and may lead to suboptimal performance with embedded processors on a power-constrained battery-operated drone. This work proposes a novel deep learning approach for performing robust semantic segmentation of aerial scenes captured by UAVs. In our setup, the power-constrained drone is used only for data collection, while the computationally intensive tasks are offloaded to a GPU cloud server. Our architecture performs robust semantic segmentation by learning the segmentation maps from jointly utilizing of aerial scenes along with the respective "elevation maps" in a semi-supervised approach. We propose a three-tier deep learning architecture, wherein the first module aims at preliminary feature extraction from aerial scenes using a backbone feature extractor. The second module captures the spatial dependency between the aerial scenes and their respective elevation maps to obtain better semantic information, which is achieved by a bi-directional LSTM. The third module is aimed at enhancing the performance of semantic segmentation through a semi-supervised approach with an encoder to generate segmentation maps and a decoder to reconstruct feature maps. This semi-supervised feature learning ensures robust extraction along with scalability. The proposed architecture was validated on real-world aerial datasets and achieves state-of-the-art results for aerial image segmentation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVT.2022.3144358</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0157-0967</orcidid><orcidid>https://orcid.org/0000-0002-8400-6762</orcidid><orcidid>https://orcid.org/0000-0002-6730-3060</orcidid><orcidid>https://orcid.org/0000-0003-1006-7594</orcidid><orcidid>https://orcid.org/0000-0003-3088-7637</orcidid><orcidid>https://orcid.org/0000-0003-1865-3512</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9545
ispartof IEEE transactions on vehicular technology, 2022-04, Vol.71 (4), p.4277-4286
issn 0018-9545
1939-9359
language eng
recordid cdi_ieee_primary_9689963
source IEEE Electronic Library (IEL) Journals
subjects aerial scene analysis
Cloud computing
Coders
Computer architecture
Deep learning
Drone aircraft
Drones
Feature extraction
Feature maps
Image segmentation
Internet of Things
IoT
Machine learning
Modules
Remote sensing
Remote sensors
Rescue operations
Robustness
Search and rescue missions
Semantic segmentation
Semantics
UAVs
Unmanned aerial vehicles
title DroneSegNet: Robust Aerial Semantic Segmentation for UAV-Based IoT Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A57%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DroneSegNet:%20Robust%20Aerial%20Semantic%20Segmentation%20for%20UAV-Based%20IoT%20Applications&rft.jtitle=IEEE%20transactions%20on%20vehicular%20technology&rft.au=Chakravarthy,%20Anirudh%20S.&rft.date=2022-04-01&rft.volume=71&rft.issue=4&rft.spage=4277&rft.epage=4286&rft.pages=4277-4286&rft.issn=0018-9545&rft.eissn=1939-9359&rft.coden=ITVTAB&rft_id=info:doi/10.1109/TVT.2022.3144358&rft_dat=%3Cproquest_ieee_%3E2659346221%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-4df03bce20eeab6b97c7978ab803ef90671b64d756caa0fd7d72649a2937ff133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2659346221&rft_id=info:pmid/&rft_ieee_id=9689963&rfr_iscdi=true