Loading…
TestDNA-E: Wafer Defect Signature for Pattern Recognition by Ensemble Learning
Wafer failure pattern recognition can be used for root cause analysis, which is very important for yield learning. Recently, TestDNA was proposed to improve diagnosis resolution with data collected from wafer test. Previous studies on wafer failure pattern recognition using machine learning achieve...
Saved in:
Published in: | IEEE transactions on semiconductor manufacturing 2022-05, Vol.35 (2), p.372-374 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c206t-8ad0938147a0e9f46da0cdfbc5b792a682a4a5e167776b8c64435cdd4e53e8d33 |
---|---|
cites | cdi_FETCH-LOGICAL-c206t-8ad0938147a0e9f46da0cdfbc5b792a682a4a5e167776b8c64435cdd4e53e8d33 |
container_end_page | 374 |
container_issue | 2 |
container_start_page | 372 |
container_title | IEEE transactions on semiconductor manufacturing |
container_volume | 35 |
creator | Li, Katherine Shu-Min Chen, Leon Li-Yang Cheng, Ken Chau-Cheung Liao, Peter Yi-Yu Wang, Sying-Jyan Huang, Andrew Yi-Ann Chou, Leon Tsai, Nova Cheng-Yen Lee, Chen-Shiun |
description | Wafer failure pattern recognition can be used for root cause analysis, which is very important for yield learning. Recently, TestDNA was proposed to improve diagnosis resolution with data collected from wafer test. Previous studies on wafer failure pattern recognition using machine learning achieve good classification results. In this letter, we propose to enhance the classification accuracy with the help of spatial information and ensemble learning algorithms. Experimental results indicate that the proposed method can further improve the accuracy by 8.9%. |
doi_str_mv | 10.1109/TSM.2022.3145855 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9690948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9690948</ieee_id><sourcerecordid>2660159768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c206t-8ad0938147a0e9f46da0cdfbc5b792a682a4a5e167776b8c64435cdd4e53e8d33</originalsourceid><addsrcrecordid>eNo9kEtPwkAUhSdGExHdm7iZxHVx3g93hIeaIBrBuJxMp7ekBKY4LQv-vSUQV2fznXtzPoTuKRlQSuzTcvE-YISxAadCGikvUI9KaTLGhbxEPWKsyJQk-hrdNM2aECqE1T00X0LTjufDbPKMf3wJCY-hhNDiRbWKvt0nwGWd8KdvW0gRf0GoV7Fqqzri_IAnsYFtvgE8A59iFVe36Kr0mwbuztlH39PJcvSazT5e3kbDWRYYUW1mfEEsN1RoT8CWQhWehKLMg8y1ZV4Z5oWXQJXWWuUmKCG4DEUhQHIwBed99Hi6u0v1776b4Nb1PsXupWNKESqtVqajyIkKqW6aBKXbpWrr08FR4o7WXGfNHa25s7Wu8nCqVADwj1tliRWG_wFiMWd4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660159768</pqid></control><display><type>article</type><title>TestDNA-E: Wafer Defect Signature for Pattern Recognition by Ensemble Learning</title><source>IEEE Xplore (Online service)</source><creator>Li, Katherine Shu-Min ; Chen, Leon Li-Yang ; Cheng, Ken Chau-Cheung ; Liao, Peter Yi-Yu ; Wang, Sying-Jyan ; Huang, Andrew Yi-Ann ; Chou, Leon ; Tsai, Nova Cheng-Yen ; Lee, Chen-Shiun</creator><creatorcontrib>Li, Katherine Shu-Min ; Chen, Leon Li-Yang ; Cheng, Ken Chau-Cheung ; Liao, Peter Yi-Yu ; Wang, Sying-Jyan ; Huang, Andrew Yi-Ann ; Chou, Leon ; Tsai, Nova Cheng-Yen ; Lee, Chen-Shiun</creatorcontrib><description>Wafer failure pattern recognition can be used for root cause analysis, which is very important for yield learning. Recently, TestDNA was proposed to improve diagnosis resolution with data collected from wafer test. Previous studies on wafer failure pattern recognition using machine learning achieve good classification results. In this letter, we propose to enhance the classification accuracy with the help of spatial information and ensemble learning algorithms. Experimental results indicate that the proposed method can further improve the accuracy by 8.9%.</description><identifier>ISSN: 0894-6507</identifier><identifier>EISSN: 1558-2345</identifier><identifier>DOI: 10.1109/TSM.2022.3145855</identifier><identifier>CODEN: ITSMED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Classification ; Decision trees ; Ensemble learning ; Failure analysis ; Feature extraction ; Machine learning ; Machine learning algorithms ; Pattern recognition ; Prediction algorithms ; Root cause analysis ; Spatial data ; Sports ; test probe ; Transforms ; wafer defect diagnosis ; wafer defect map ; wafer defect pattern ; Wafer test ; yield learning</subject><ispartof>IEEE transactions on semiconductor manufacturing, 2022-05, Vol.35 (2), p.372-374</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c206t-8ad0938147a0e9f46da0cdfbc5b792a682a4a5e167776b8c64435cdd4e53e8d33</citedby><cites>FETCH-LOGICAL-c206t-8ad0938147a0e9f46da0cdfbc5b792a682a4a5e167776b8c64435cdd4e53e8d33</cites><orcidid>0000-0001-6346-015X ; 0000-0002-9517-3582 ; 0000-0002-9942-5185</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9690948$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Li, Katherine Shu-Min</creatorcontrib><creatorcontrib>Chen, Leon Li-Yang</creatorcontrib><creatorcontrib>Cheng, Ken Chau-Cheung</creatorcontrib><creatorcontrib>Liao, Peter Yi-Yu</creatorcontrib><creatorcontrib>Wang, Sying-Jyan</creatorcontrib><creatorcontrib>Huang, Andrew Yi-Ann</creatorcontrib><creatorcontrib>Chou, Leon</creatorcontrib><creatorcontrib>Tsai, Nova Cheng-Yen</creatorcontrib><creatorcontrib>Lee, Chen-Shiun</creatorcontrib><title>TestDNA-E: Wafer Defect Signature for Pattern Recognition by Ensemble Learning</title><title>IEEE transactions on semiconductor manufacturing</title><addtitle>TSM</addtitle><description>Wafer failure pattern recognition can be used for root cause analysis, which is very important for yield learning. Recently, TestDNA was proposed to improve diagnosis resolution with data collected from wafer test. Previous studies on wafer failure pattern recognition using machine learning achieve good classification results. In this letter, we propose to enhance the classification accuracy with the help of spatial information and ensemble learning algorithms. Experimental results indicate that the proposed method can further improve the accuracy by 8.9%.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Decision trees</subject><subject>Ensemble learning</subject><subject>Failure analysis</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Pattern recognition</subject><subject>Prediction algorithms</subject><subject>Root cause analysis</subject><subject>Spatial data</subject><subject>Sports</subject><subject>test probe</subject><subject>Transforms</subject><subject>wafer defect diagnosis</subject><subject>wafer defect map</subject><subject>wafer defect pattern</subject><subject>Wafer test</subject><subject>yield learning</subject><issn>0894-6507</issn><issn>1558-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwkAUhSdGExHdm7iZxHVx3g93hIeaIBrBuJxMp7ekBKY4LQv-vSUQV2fznXtzPoTuKRlQSuzTcvE-YISxAadCGikvUI9KaTLGhbxEPWKsyJQk-hrdNM2aECqE1T00X0LTjufDbPKMf3wJCY-hhNDiRbWKvt0nwGWd8KdvW0gRf0GoV7Fqqzri_IAnsYFtvgE8A59iFVe36Kr0mwbuztlH39PJcvSazT5e3kbDWRYYUW1mfEEsN1RoT8CWQhWehKLMg8y1ZV4Z5oWXQJXWWuUmKCG4DEUhQHIwBed99Hi6u0v1776b4Nb1PsXupWNKESqtVqajyIkKqW6aBKXbpWrr08FR4o7WXGfNHa25s7Wu8nCqVADwj1tliRWG_wFiMWd4</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Li, Katherine Shu-Min</creator><creator>Chen, Leon Li-Yang</creator><creator>Cheng, Ken Chau-Cheung</creator><creator>Liao, Peter Yi-Yu</creator><creator>Wang, Sying-Jyan</creator><creator>Huang, Andrew Yi-Ann</creator><creator>Chou, Leon</creator><creator>Tsai, Nova Cheng-Yen</creator><creator>Lee, Chen-Shiun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6346-015X</orcidid><orcidid>https://orcid.org/0000-0002-9517-3582</orcidid><orcidid>https://orcid.org/0000-0002-9942-5185</orcidid></search><sort><creationdate>20220501</creationdate><title>TestDNA-E: Wafer Defect Signature for Pattern Recognition by Ensemble Learning</title><author>Li, Katherine Shu-Min ; Chen, Leon Li-Yang ; Cheng, Ken Chau-Cheung ; Liao, Peter Yi-Yu ; Wang, Sying-Jyan ; Huang, Andrew Yi-Ann ; Chou, Leon ; Tsai, Nova Cheng-Yen ; Lee, Chen-Shiun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c206t-8ad0938147a0e9f46da0cdfbc5b792a682a4a5e167776b8c64435cdd4e53e8d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Decision trees</topic><topic>Ensemble learning</topic><topic>Failure analysis</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Pattern recognition</topic><topic>Prediction algorithms</topic><topic>Root cause analysis</topic><topic>Spatial data</topic><topic>Sports</topic><topic>test probe</topic><topic>Transforms</topic><topic>wafer defect diagnosis</topic><topic>wafer defect map</topic><topic>wafer defect pattern</topic><topic>Wafer test</topic><topic>yield learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Katherine Shu-Min</creatorcontrib><creatorcontrib>Chen, Leon Li-Yang</creatorcontrib><creatorcontrib>Cheng, Ken Chau-Cheung</creatorcontrib><creatorcontrib>Liao, Peter Yi-Yu</creatorcontrib><creatorcontrib>Wang, Sying-Jyan</creatorcontrib><creatorcontrib>Huang, Andrew Yi-Ann</creatorcontrib><creatorcontrib>Chou, Leon</creatorcontrib><creatorcontrib>Tsai, Nova Cheng-Yen</creatorcontrib><creatorcontrib>Lee, Chen-Shiun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on semiconductor manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Katherine Shu-Min</au><au>Chen, Leon Li-Yang</au><au>Cheng, Ken Chau-Cheung</au><au>Liao, Peter Yi-Yu</au><au>Wang, Sying-Jyan</au><au>Huang, Andrew Yi-Ann</au><au>Chou, Leon</au><au>Tsai, Nova Cheng-Yen</au><au>Lee, Chen-Shiun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TestDNA-E: Wafer Defect Signature for Pattern Recognition by Ensemble Learning</atitle><jtitle>IEEE transactions on semiconductor manufacturing</jtitle><stitle>TSM</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>35</volume><issue>2</issue><spage>372</spage><epage>374</epage><pages>372-374</pages><issn>0894-6507</issn><eissn>1558-2345</eissn><coden>ITSMED</coden><abstract>Wafer failure pattern recognition can be used for root cause analysis, which is very important for yield learning. Recently, TestDNA was proposed to improve diagnosis resolution with data collected from wafer test. Previous studies on wafer failure pattern recognition using machine learning achieve good classification results. In this letter, we propose to enhance the classification accuracy with the help of spatial information and ensemble learning algorithms. Experimental results indicate that the proposed method can further improve the accuracy by 8.9%.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSM.2022.3145855</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0001-6346-015X</orcidid><orcidid>https://orcid.org/0000-0002-9517-3582</orcidid><orcidid>https://orcid.org/0000-0002-9942-5185</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-6507 |
ispartof | IEEE transactions on semiconductor manufacturing, 2022-05, Vol.35 (2), p.372-374 |
issn | 0894-6507 1558-2345 |
language | eng |
recordid | cdi_ieee_primary_9690948 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Classification Decision trees Ensemble learning Failure analysis Feature extraction Machine learning Machine learning algorithms Pattern recognition Prediction algorithms Root cause analysis Spatial data Sports test probe Transforms wafer defect diagnosis wafer defect map wafer defect pattern Wafer test yield learning |
title | TestDNA-E: Wafer Defect Signature for Pattern Recognition by Ensemble Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A46%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TestDNA-E:%20Wafer%20Defect%20Signature%20for%20Pattern%20Recognition%20by%20Ensemble%20Learning&rft.jtitle=IEEE%20transactions%20on%20semiconductor%20manufacturing&rft.au=Li,%20Katherine%20Shu-Min&rft.date=2022-05-01&rft.volume=35&rft.issue=2&rft.spage=372&rft.epage=374&rft.pages=372-374&rft.issn=0894-6507&rft.eissn=1558-2345&rft.coden=ITSMED&rft_id=info:doi/10.1109/TSM.2022.3145855&rft_dat=%3Cproquest_ieee_%3E2660159768%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c206t-8ad0938147a0e9f46da0cdfbc5b792a682a4a5e167776b8c64435cdd4e53e8d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2660159768&rft_id=info:pmid/&rft_ieee_id=9690948&rfr_iscdi=true |