Loading…

TestDNA-E: Wafer Defect Signature for Pattern Recognition by Ensemble Learning

Wafer failure pattern recognition can be used for root cause analysis, which is very important for yield learning. Recently, TestDNA was proposed to improve diagnosis resolution with data collected from wafer test. Previous studies on wafer failure pattern recognition using machine learning achieve...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on semiconductor manufacturing 2022-05, Vol.35 (2), p.372-374
Main Authors: Li, Katherine Shu-Min, Chen, Leon Li-Yang, Cheng, Ken Chau-Cheung, Liao, Peter Yi-Yu, Wang, Sying-Jyan, Huang, Andrew Yi-Ann, Chou, Leon, Tsai, Nova Cheng-Yen, Lee, Chen-Shiun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c206t-8ad0938147a0e9f46da0cdfbc5b792a682a4a5e167776b8c64435cdd4e53e8d33
cites cdi_FETCH-LOGICAL-c206t-8ad0938147a0e9f46da0cdfbc5b792a682a4a5e167776b8c64435cdd4e53e8d33
container_end_page 374
container_issue 2
container_start_page 372
container_title IEEE transactions on semiconductor manufacturing
container_volume 35
creator Li, Katherine Shu-Min
Chen, Leon Li-Yang
Cheng, Ken Chau-Cheung
Liao, Peter Yi-Yu
Wang, Sying-Jyan
Huang, Andrew Yi-Ann
Chou, Leon
Tsai, Nova Cheng-Yen
Lee, Chen-Shiun
description Wafer failure pattern recognition can be used for root cause analysis, which is very important for yield learning. Recently, TestDNA was proposed to improve diagnosis resolution with data collected from wafer test. Previous studies on wafer failure pattern recognition using machine learning achieve good classification results. In this letter, we propose to enhance the classification accuracy with the help of spatial information and ensemble learning algorithms. Experimental results indicate that the proposed method can further improve the accuracy by 8.9%.
doi_str_mv 10.1109/TSM.2022.3145855
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9690948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9690948</ieee_id><sourcerecordid>2660159768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c206t-8ad0938147a0e9f46da0cdfbc5b792a682a4a5e167776b8c64435cdd4e53e8d33</originalsourceid><addsrcrecordid>eNo9kEtPwkAUhSdGExHdm7iZxHVx3g93hIeaIBrBuJxMp7ekBKY4LQv-vSUQV2fznXtzPoTuKRlQSuzTcvE-YISxAadCGikvUI9KaTLGhbxEPWKsyJQk-hrdNM2aECqE1T00X0LTjufDbPKMf3wJCY-hhNDiRbWKvt0nwGWd8KdvW0gRf0GoV7Fqqzri_IAnsYFtvgE8A59iFVe36Kr0mwbuztlH39PJcvSazT5e3kbDWRYYUW1mfEEsN1RoT8CWQhWehKLMg8y1ZV4Z5oWXQJXWWuUmKCG4DEUhQHIwBed99Hi6u0v1776b4Nb1PsXupWNKESqtVqajyIkKqW6aBKXbpWrr08FR4o7WXGfNHa25s7Wu8nCqVADwj1tliRWG_wFiMWd4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660159768</pqid></control><display><type>article</type><title>TestDNA-E: Wafer Defect Signature for Pattern Recognition by Ensemble Learning</title><source>IEEE Xplore (Online service)</source><creator>Li, Katherine Shu-Min ; Chen, Leon Li-Yang ; Cheng, Ken Chau-Cheung ; Liao, Peter Yi-Yu ; Wang, Sying-Jyan ; Huang, Andrew Yi-Ann ; Chou, Leon ; Tsai, Nova Cheng-Yen ; Lee, Chen-Shiun</creator><creatorcontrib>Li, Katherine Shu-Min ; Chen, Leon Li-Yang ; Cheng, Ken Chau-Cheung ; Liao, Peter Yi-Yu ; Wang, Sying-Jyan ; Huang, Andrew Yi-Ann ; Chou, Leon ; Tsai, Nova Cheng-Yen ; Lee, Chen-Shiun</creatorcontrib><description>Wafer failure pattern recognition can be used for root cause analysis, which is very important for yield learning. Recently, TestDNA was proposed to improve diagnosis resolution with data collected from wafer test. Previous studies on wafer failure pattern recognition using machine learning achieve good classification results. In this letter, we propose to enhance the classification accuracy with the help of spatial information and ensemble learning algorithms. Experimental results indicate that the proposed method can further improve the accuracy by 8.9%.</description><identifier>ISSN: 0894-6507</identifier><identifier>EISSN: 1558-2345</identifier><identifier>DOI: 10.1109/TSM.2022.3145855</identifier><identifier>CODEN: ITSMED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Classification ; Decision trees ; Ensemble learning ; Failure analysis ; Feature extraction ; Machine learning ; Machine learning algorithms ; Pattern recognition ; Prediction algorithms ; Root cause analysis ; Spatial data ; Sports ; test probe ; Transforms ; wafer defect diagnosis ; wafer defect map ; wafer defect pattern ; Wafer test ; yield learning</subject><ispartof>IEEE transactions on semiconductor manufacturing, 2022-05, Vol.35 (2), p.372-374</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c206t-8ad0938147a0e9f46da0cdfbc5b792a682a4a5e167776b8c64435cdd4e53e8d33</citedby><cites>FETCH-LOGICAL-c206t-8ad0938147a0e9f46da0cdfbc5b792a682a4a5e167776b8c64435cdd4e53e8d33</cites><orcidid>0000-0001-6346-015X ; 0000-0002-9517-3582 ; 0000-0002-9942-5185</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9690948$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Li, Katherine Shu-Min</creatorcontrib><creatorcontrib>Chen, Leon Li-Yang</creatorcontrib><creatorcontrib>Cheng, Ken Chau-Cheung</creatorcontrib><creatorcontrib>Liao, Peter Yi-Yu</creatorcontrib><creatorcontrib>Wang, Sying-Jyan</creatorcontrib><creatorcontrib>Huang, Andrew Yi-Ann</creatorcontrib><creatorcontrib>Chou, Leon</creatorcontrib><creatorcontrib>Tsai, Nova Cheng-Yen</creatorcontrib><creatorcontrib>Lee, Chen-Shiun</creatorcontrib><title>TestDNA-E: Wafer Defect Signature for Pattern Recognition by Ensemble Learning</title><title>IEEE transactions on semiconductor manufacturing</title><addtitle>TSM</addtitle><description>Wafer failure pattern recognition can be used for root cause analysis, which is very important for yield learning. Recently, TestDNA was proposed to improve diagnosis resolution with data collected from wafer test. Previous studies on wafer failure pattern recognition using machine learning achieve good classification results. In this letter, we propose to enhance the classification accuracy with the help of spatial information and ensemble learning algorithms. Experimental results indicate that the proposed method can further improve the accuracy by 8.9%.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Decision trees</subject><subject>Ensemble learning</subject><subject>Failure analysis</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Pattern recognition</subject><subject>Prediction algorithms</subject><subject>Root cause analysis</subject><subject>Spatial data</subject><subject>Sports</subject><subject>test probe</subject><subject>Transforms</subject><subject>wafer defect diagnosis</subject><subject>wafer defect map</subject><subject>wafer defect pattern</subject><subject>Wafer test</subject><subject>yield learning</subject><issn>0894-6507</issn><issn>1558-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwkAUhSdGExHdm7iZxHVx3g93hIeaIBrBuJxMp7ekBKY4LQv-vSUQV2fznXtzPoTuKRlQSuzTcvE-YISxAadCGikvUI9KaTLGhbxEPWKsyJQk-hrdNM2aECqE1T00X0LTjufDbPKMf3wJCY-hhNDiRbWKvt0nwGWd8KdvW0gRf0GoV7Fqqzri_IAnsYFtvgE8A59iFVe36Kr0mwbuztlH39PJcvSazT5e3kbDWRYYUW1mfEEsN1RoT8CWQhWehKLMg8y1ZV4Z5oWXQJXWWuUmKCG4DEUhQHIwBed99Hi6u0v1776b4Nb1PsXupWNKESqtVqajyIkKqW6aBKXbpWrr08FR4o7WXGfNHa25s7Wu8nCqVADwj1tliRWG_wFiMWd4</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Li, Katherine Shu-Min</creator><creator>Chen, Leon Li-Yang</creator><creator>Cheng, Ken Chau-Cheung</creator><creator>Liao, Peter Yi-Yu</creator><creator>Wang, Sying-Jyan</creator><creator>Huang, Andrew Yi-Ann</creator><creator>Chou, Leon</creator><creator>Tsai, Nova Cheng-Yen</creator><creator>Lee, Chen-Shiun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6346-015X</orcidid><orcidid>https://orcid.org/0000-0002-9517-3582</orcidid><orcidid>https://orcid.org/0000-0002-9942-5185</orcidid></search><sort><creationdate>20220501</creationdate><title>TestDNA-E: Wafer Defect Signature for Pattern Recognition by Ensemble Learning</title><author>Li, Katherine Shu-Min ; Chen, Leon Li-Yang ; Cheng, Ken Chau-Cheung ; Liao, Peter Yi-Yu ; Wang, Sying-Jyan ; Huang, Andrew Yi-Ann ; Chou, Leon ; Tsai, Nova Cheng-Yen ; Lee, Chen-Shiun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c206t-8ad0938147a0e9f46da0cdfbc5b792a682a4a5e167776b8c64435cdd4e53e8d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Decision trees</topic><topic>Ensemble learning</topic><topic>Failure analysis</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Pattern recognition</topic><topic>Prediction algorithms</topic><topic>Root cause analysis</topic><topic>Spatial data</topic><topic>Sports</topic><topic>test probe</topic><topic>Transforms</topic><topic>wafer defect diagnosis</topic><topic>wafer defect map</topic><topic>wafer defect pattern</topic><topic>Wafer test</topic><topic>yield learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Katherine Shu-Min</creatorcontrib><creatorcontrib>Chen, Leon Li-Yang</creatorcontrib><creatorcontrib>Cheng, Ken Chau-Cheung</creatorcontrib><creatorcontrib>Liao, Peter Yi-Yu</creatorcontrib><creatorcontrib>Wang, Sying-Jyan</creatorcontrib><creatorcontrib>Huang, Andrew Yi-Ann</creatorcontrib><creatorcontrib>Chou, Leon</creatorcontrib><creatorcontrib>Tsai, Nova Cheng-Yen</creatorcontrib><creatorcontrib>Lee, Chen-Shiun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on semiconductor manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Katherine Shu-Min</au><au>Chen, Leon Li-Yang</au><au>Cheng, Ken Chau-Cheung</au><au>Liao, Peter Yi-Yu</au><au>Wang, Sying-Jyan</au><au>Huang, Andrew Yi-Ann</au><au>Chou, Leon</au><au>Tsai, Nova Cheng-Yen</au><au>Lee, Chen-Shiun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TestDNA-E: Wafer Defect Signature for Pattern Recognition by Ensemble Learning</atitle><jtitle>IEEE transactions on semiconductor manufacturing</jtitle><stitle>TSM</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>35</volume><issue>2</issue><spage>372</spage><epage>374</epage><pages>372-374</pages><issn>0894-6507</issn><eissn>1558-2345</eissn><coden>ITSMED</coden><abstract>Wafer failure pattern recognition can be used for root cause analysis, which is very important for yield learning. Recently, TestDNA was proposed to improve diagnosis resolution with data collected from wafer test. Previous studies on wafer failure pattern recognition using machine learning achieve good classification results. In this letter, we propose to enhance the classification accuracy with the help of spatial information and ensemble learning algorithms. Experimental results indicate that the proposed method can further improve the accuracy by 8.9%.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSM.2022.3145855</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0001-6346-015X</orcidid><orcidid>https://orcid.org/0000-0002-9517-3582</orcidid><orcidid>https://orcid.org/0000-0002-9942-5185</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0894-6507
ispartof IEEE transactions on semiconductor manufacturing, 2022-05, Vol.35 (2), p.372-374
issn 0894-6507
1558-2345
language eng
recordid cdi_ieee_primary_9690948
source IEEE Xplore (Online service)
subjects Algorithms
Classification
Decision trees
Ensemble learning
Failure analysis
Feature extraction
Machine learning
Machine learning algorithms
Pattern recognition
Prediction algorithms
Root cause analysis
Spatial data
Sports
test probe
Transforms
wafer defect diagnosis
wafer defect map
wafer defect pattern
Wafer test
yield learning
title TestDNA-E: Wafer Defect Signature for Pattern Recognition by Ensemble Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A46%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TestDNA-E:%20Wafer%20Defect%20Signature%20for%20Pattern%20Recognition%20by%20Ensemble%20Learning&rft.jtitle=IEEE%20transactions%20on%20semiconductor%20manufacturing&rft.au=Li,%20Katherine%20Shu-Min&rft.date=2022-05-01&rft.volume=35&rft.issue=2&rft.spage=372&rft.epage=374&rft.pages=372-374&rft.issn=0894-6507&rft.eissn=1558-2345&rft.coden=ITSMED&rft_id=info:doi/10.1109/TSM.2022.3145855&rft_dat=%3Cproquest_ieee_%3E2660159768%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c206t-8ad0938147a0e9f46da0cdfbc5b792a682a4a5e167776b8c64435cdd4e53e8d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2660159768&rft_id=info:pmid/&rft_ieee_id=9690948&rfr_iscdi=true