Loading…
Efficient Load Balancing for Heterogeneous Radio-Replication-Combined LoRaWAN
LoRa wide area network (LoRaWAN), an emerging IoT protocol, has been popularized in large-scale applications, given its long-range and low-power properties. Hitherto, there is no appropriate traffic model for LoRaWAN to estimate the heterogeneous arriving traffic at the network server cluster (NSC)....
Saved in:
Published in: | IEEE transactions on industrial informatics 2022-11, Vol.18 (11), p.7400-7411 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-2136140a443d75ace9be36dd1f37bda1cf0cad8d8c896fa0d4f386931f461c5a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-2136140a443d75ace9be36dd1f37bda1cf0cad8d8c896fa0d4f386931f461c5a3 |
container_end_page | 7411 |
container_issue | 11 |
container_start_page | 7400 |
container_title | IEEE transactions on industrial informatics |
container_volume | 18 |
creator | Liu, Yucheng Tsang, Kim-Fung Zhu, Hongxu Chi, Hao Ran Wei, Yang Wang, Hao Wu, Chung Kit |
description | LoRa wide area network (LoRaWAN), an emerging IoT protocol, has been popularized in large-scale applications, given its long-range and low-power properties. Hitherto, there is no appropriate traffic model for LoRaWAN to estimate the heterogeneous arriving traffic at the network server cluster (NSC). Inefficient computation power planning or even processing failure might be further caused. Radio replication, commonly existed in the arriving traffic at NSC in LoRaWAN, also causes difficulty estimating the makespan (i.e., mean processing time in NSC). To overcome the abovementioned limitations, a heterogeneous radio-replication-aware traffic aggregation model is proposed to estimate the arriving traffic for LoRaWAN. In addition, a radio-replication-combined supermarket model (RRC-SM), on top of HTAM, is proposed to achieve load balancing among servers in LoRaWAN. Furthermore, a nondominated sorting genetic algorithm based on multiobjective optimization is developed to simultaneously minimize cost and latency on NSC. Experiments reveal that the proposed HTAM and RRC-SM agree well with the simulation outcome. Under the arriving traffic estimated as 6.16 erlangs with four radio replications of each arriving packet on average, the proposed RRC-SM provides more than 50% reduction on the total processing latency and 75% reduction on the number of servers in NSC than other existing models. |
doi_str_mv | 10.1109/TII.2022.3145846 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9693188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9693188</ieee_id><sourcerecordid>2716346963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-2136140a443d75ace9be36dd1f37bda1cf0cad8d8c896fa0d4f386931f461c5a3</originalsourceid><addsrcrecordid>eNo9kM9LAzEQhYMoWKt3wcuC560zO9ns5lhLtYWqUCoeQ5ofJaXd1Oz24H_vloqnmcP73oOPsXuEESLIp9V8PiqgKEaEvKy5uGADlBxzgBIu-78sMacC6JrdtO0WgCogOWBvU--DCa7pskXUNnvWO92Y0GwyH1M2c51LceMaF49tttQ2xHzpDrtgdBdik0_ifh0aZ3t2qb_G77fsyutd6-7-7pB9vkxXk1m--HidT8aL3BQSu7xAEshBc062KrVxcu1IWIueqrXVaDwYbWtbm1oKr8FyT7WQhJ4LNKWmIXs89x5S_D66tlPbeExNP6mKCgVxIQX1KTinTIptm5xXhxT2Ov0oBHWSpnpp6iRN_UnrkYczEpxz_3F52q5r-gVs72ed</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716346963</pqid></control><display><type>article</type><title>Efficient Load Balancing for Heterogeneous Radio-Replication-Combined LoRaWAN</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Liu, Yucheng ; Tsang, Kim-Fung ; Zhu, Hongxu ; Chi, Hao Ran ; Wei, Yang ; Wang, Hao ; Wu, Chung Kit</creator><creatorcontrib>Liu, Yucheng ; Tsang, Kim-Fung ; Zhu, Hongxu ; Chi, Hao Ran ; Wei, Yang ; Wang, Hao ; Wu, Chung Kit</creatorcontrib><description>LoRa wide area network (LoRaWAN), an emerging IoT protocol, has been popularized in large-scale applications, given its long-range and low-power properties. Hitherto, there is no appropriate traffic model for LoRaWAN to estimate the heterogeneous arriving traffic at the network server cluster (NSC). Inefficient computation power planning or even processing failure might be further caused. Radio replication, commonly existed in the arriving traffic at NSC in LoRaWAN, also causes difficulty estimating the makespan (i.e., mean processing time in NSC). To overcome the abovementioned limitations, a heterogeneous radio-replication-aware traffic aggregation model is proposed to estimate the arriving traffic for LoRaWAN. In addition, a radio-replication-combined supermarket model (RRC-SM), on top of HTAM, is proposed to achieve load balancing among servers in LoRaWAN. Furthermore, a nondominated sorting genetic algorithm based on multiobjective optimization is developed to simultaneously minimize cost and latency on NSC. Experiments reveal that the proposed HTAM and RRC-SM agree well with the simulation outcome. Under the arriving traffic estimated as 6.16 erlangs with four radio replications of each arriving packet on average, the proposed RRC-SM provides more than 50% reduction on the total processing latency and 75% reduction on the number of servers in NSC than other existing models.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2022.3145846</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Computational modeling ; Costs ; Genetic algorithms ; Heterogeneous traffic aggregation model (HTAM) ; Load balancing ; Load management ; Load modeling ; Logic gates ; Multiple objective analysis ; network server cluster (NSC) ; Network servers ; Optimization ; optimized load balancing (LB) for LoRa wide area network (LoRaWAN) ; radio-replication-combined supermarket model (RRC-SM) ; Replication ; Servers ; Sorting algorithms ; Traffic models ; Traffic planning ; Wide area networks</subject><ispartof>IEEE transactions on industrial informatics, 2022-11, Vol.18 (11), p.7400-7411</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-2136140a443d75ace9be36dd1f37bda1cf0cad8d8c896fa0d4f386931f461c5a3</citedby><cites>FETCH-LOGICAL-c291t-2136140a443d75ace9be36dd1f37bda1cf0cad8d8c896fa0d4f386931f461c5a3</cites><orcidid>0000-0002-5763-9935 ; 0000-0001-8135-4510 ; 0000-0002-8230-6294 ; 0000-0003-3393-6211 ; 0000-0001-9499-8446 ; 0000-0001-6257-7065 ; 0000-0002-8332-227X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9693188$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Liu, Yucheng</creatorcontrib><creatorcontrib>Tsang, Kim-Fung</creatorcontrib><creatorcontrib>Zhu, Hongxu</creatorcontrib><creatorcontrib>Chi, Hao Ran</creatorcontrib><creatorcontrib>Wei, Yang</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Wu, Chung Kit</creatorcontrib><title>Efficient Load Balancing for Heterogeneous Radio-Replication-Combined LoRaWAN</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>LoRa wide area network (LoRaWAN), an emerging IoT protocol, has been popularized in large-scale applications, given its long-range and low-power properties. Hitherto, there is no appropriate traffic model for LoRaWAN to estimate the heterogeneous arriving traffic at the network server cluster (NSC). Inefficient computation power planning or even processing failure might be further caused. Radio replication, commonly existed in the arriving traffic at NSC in LoRaWAN, also causes difficulty estimating the makespan (i.e., mean processing time in NSC). To overcome the abovementioned limitations, a heterogeneous radio-replication-aware traffic aggregation model is proposed to estimate the arriving traffic for LoRaWAN. In addition, a radio-replication-combined supermarket model (RRC-SM), on top of HTAM, is proposed to achieve load balancing among servers in LoRaWAN. Furthermore, a nondominated sorting genetic algorithm based on multiobjective optimization is developed to simultaneously minimize cost and latency on NSC. Experiments reveal that the proposed HTAM and RRC-SM agree well with the simulation outcome. Under the arriving traffic estimated as 6.16 erlangs with four radio replications of each arriving packet on average, the proposed RRC-SM provides more than 50% reduction on the total processing latency and 75% reduction on the number of servers in NSC than other existing models.</description><subject>Computational modeling</subject><subject>Costs</subject><subject>Genetic algorithms</subject><subject>Heterogeneous traffic aggregation model (HTAM)</subject><subject>Load balancing</subject><subject>Load management</subject><subject>Load modeling</subject><subject>Logic gates</subject><subject>Multiple objective analysis</subject><subject>network server cluster (NSC)</subject><subject>Network servers</subject><subject>Optimization</subject><subject>optimized load balancing (LB) for LoRa wide area network (LoRaWAN)</subject><subject>radio-replication-combined supermarket model (RRC-SM)</subject><subject>Replication</subject><subject>Servers</subject><subject>Sorting algorithms</subject><subject>Traffic models</subject><subject>Traffic planning</subject><subject>Wide area networks</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kM9LAzEQhYMoWKt3wcuC560zO9ns5lhLtYWqUCoeQ5ofJaXd1Oz24H_vloqnmcP73oOPsXuEESLIp9V8PiqgKEaEvKy5uGADlBxzgBIu-78sMacC6JrdtO0WgCogOWBvU--DCa7pskXUNnvWO92Y0GwyH1M2c51LceMaF49tttQ2xHzpDrtgdBdik0_ifh0aZ3t2qb_G77fsyutd6-7-7pB9vkxXk1m--HidT8aL3BQSu7xAEshBc062KrVxcu1IWIueqrXVaDwYbWtbm1oKr8FyT7WQhJ4LNKWmIXs89x5S_D66tlPbeExNP6mKCgVxIQX1KTinTIptm5xXhxT2Ov0oBHWSpnpp6iRN_UnrkYczEpxz_3F52q5r-gVs72ed</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Liu, Yucheng</creator><creator>Tsang, Kim-Fung</creator><creator>Zhu, Hongxu</creator><creator>Chi, Hao Ran</creator><creator>Wei, Yang</creator><creator>Wang, Hao</creator><creator>Wu, Chung Kit</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5763-9935</orcidid><orcidid>https://orcid.org/0000-0001-8135-4510</orcidid><orcidid>https://orcid.org/0000-0002-8230-6294</orcidid><orcidid>https://orcid.org/0000-0003-3393-6211</orcidid><orcidid>https://orcid.org/0000-0001-9499-8446</orcidid><orcidid>https://orcid.org/0000-0001-6257-7065</orcidid><orcidid>https://orcid.org/0000-0002-8332-227X</orcidid></search><sort><creationdate>20221101</creationdate><title>Efficient Load Balancing for Heterogeneous Radio-Replication-Combined LoRaWAN</title><author>Liu, Yucheng ; Tsang, Kim-Fung ; Zhu, Hongxu ; Chi, Hao Ran ; Wei, Yang ; Wang, Hao ; Wu, Chung Kit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-2136140a443d75ace9be36dd1f37bda1cf0cad8d8c896fa0d4f386931f461c5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computational modeling</topic><topic>Costs</topic><topic>Genetic algorithms</topic><topic>Heterogeneous traffic aggregation model (HTAM)</topic><topic>Load balancing</topic><topic>Load management</topic><topic>Load modeling</topic><topic>Logic gates</topic><topic>Multiple objective analysis</topic><topic>network server cluster (NSC)</topic><topic>Network servers</topic><topic>Optimization</topic><topic>optimized load balancing (LB) for LoRa wide area network (LoRaWAN)</topic><topic>radio-replication-combined supermarket model (RRC-SM)</topic><topic>Replication</topic><topic>Servers</topic><topic>Sorting algorithms</topic><topic>Traffic models</topic><topic>Traffic planning</topic><topic>Wide area networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yucheng</creatorcontrib><creatorcontrib>Tsang, Kim-Fung</creatorcontrib><creatorcontrib>Zhu, Hongxu</creatorcontrib><creatorcontrib>Chi, Hao Ran</creatorcontrib><creatorcontrib>Wei, Yang</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Wu, Chung Kit</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yucheng</au><au>Tsang, Kim-Fung</au><au>Zhu, Hongxu</au><au>Chi, Hao Ran</au><au>Wei, Yang</au><au>Wang, Hao</au><au>Wu, Chung Kit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Load Balancing for Heterogeneous Radio-Replication-Combined LoRaWAN</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>18</volume><issue>11</issue><spage>7400</spage><epage>7411</epage><pages>7400-7411</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>LoRa wide area network (LoRaWAN), an emerging IoT protocol, has been popularized in large-scale applications, given its long-range and low-power properties. Hitherto, there is no appropriate traffic model for LoRaWAN to estimate the heterogeneous arriving traffic at the network server cluster (NSC). Inefficient computation power planning or even processing failure might be further caused. Radio replication, commonly existed in the arriving traffic at NSC in LoRaWAN, also causes difficulty estimating the makespan (i.e., mean processing time in NSC). To overcome the abovementioned limitations, a heterogeneous radio-replication-aware traffic aggregation model is proposed to estimate the arriving traffic for LoRaWAN. In addition, a radio-replication-combined supermarket model (RRC-SM), on top of HTAM, is proposed to achieve load balancing among servers in LoRaWAN. Furthermore, a nondominated sorting genetic algorithm based on multiobjective optimization is developed to simultaneously minimize cost and latency on NSC. Experiments reveal that the proposed HTAM and RRC-SM agree well with the simulation outcome. Under the arriving traffic estimated as 6.16 erlangs with four radio replications of each arriving packet on average, the proposed RRC-SM provides more than 50% reduction on the total processing latency and 75% reduction on the number of servers in NSC than other existing models.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2022.3145846</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5763-9935</orcidid><orcidid>https://orcid.org/0000-0001-8135-4510</orcidid><orcidid>https://orcid.org/0000-0002-8230-6294</orcidid><orcidid>https://orcid.org/0000-0003-3393-6211</orcidid><orcidid>https://orcid.org/0000-0001-9499-8446</orcidid><orcidid>https://orcid.org/0000-0001-6257-7065</orcidid><orcidid>https://orcid.org/0000-0002-8332-227X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2022-11, Vol.18 (11), p.7400-7411 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_ieee_primary_9693188 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Computational modeling Costs Genetic algorithms Heterogeneous traffic aggregation model (HTAM) Load balancing Load management Load modeling Logic gates Multiple objective analysis network server cluster (NSC) Network servers Optimization optimized load balancing (LB) for LoRa wide area network (LoRaWAN) radio-replication-combined supermarket model (RRC-SM) Replication Servers Sorting algorithms Traffic models Traffic planning Wide area networks |
title | Efficient Load Balancing for Heterogeneous Radio-Replication-Combined LoRaWAN |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A46%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Load%20Balancing%20for%20Heterogeneous%20Radio-Replication-Combined%20LoRaWAN&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Liu,%20Yucheng&rft.date=2022-11-01&rft.volume=18&rft.issue=11&rft.spage=7400&rft.epage=7411&rft.pages=7400-7411&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2022.3145846&rft_dat=%3Cproquest_ieee_%3E2716346963%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-2136140a443d75ace9be36dd1f37bda1cf0cad8d8c896fa0d4f386931f461c5a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2716346963&rft_id=info:pmid/&rft_ieee_id=9693188&rfr_iscdi=true |