Loading…

Efficient Load Balancing for Heterogeneous Radio-Replication-Combined LoRaWAN

LoRa wide area network (LoRaWAN), an emerging IoT protocol, has been popularized in large-scale applications, given its long-range and low-power properties. Hitherto, there is no appropriate traffic model for LoRaWAN to estimate the heterogeneous arriving traffic at the network server cluster (NSC)....

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial informatics 2022-11, Vol.18 (11), p.7400-7411
Main Authors: Liu, Yucheng, Tsang, Kim-Fung, Zhu, Hongxu, Chi, Hao Ran, Wei, Yang, Wang, Hao, Wu, Chung Kit
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-2136140a443d75ace9be36dd1f37bda1cf0cad8d8c896fa0d4f386931f461c5a3
cites cdi_FETCH-LOGICAL-c291t-2136140a443d75ace9be36dd1f37bda1cf0cad8d8c896fa0d4f386931f461c5a3
container_end_page 7411
container_issue 11
container_start_page 7400
container_title IEEE transactions on industrial informatics
container_volume 18
creator Liu, Yucheng
Tsang, Kim-Fung
Zhu, Hongxu
Chi, Hao Ran
Wei, Yang
Wang, Hao
Wu, Chung Kit
description LoRa wide area network (LoRaWAN), an emerging IoT protocol, has been popularized in large-scale applications, given its long-range and low-power properties. Hitherto, there is no appropriate traffic model for LoRaWAN to estimate the heterogeneous arriving traffic at the network server cluster (NSC). Inefficient computation power planning or even processing failure might be further caused. Radio replication, commonly existed in the arriving traffic at NSC in LoRaWAN, also causes difficulty estimating the makespan (i.e., mean processing time in NSC). To overcome the abovementioned limitations, a heterogeneous radio-replication-aware traffic aggregation model is proposed to estimate the arriving traffic for LoRaWAN. In addition, a radio-replication-combined supermarket model (RRC-SM), on top of HTAM, is proposed to achieve load balancing among servers in LoRaWAN. Furthermore, a nondominated sorting genetic algorithm based on multiobjective optimization is developed to simultaneously minimize cost and latency on NSC. Experiments reveal that the proposed HTAM and RRC-SM agree well with the simulation outcome. Under the arriving traffic estimated as 6.16 erlangs with four radio replications of each arriving packet on average, the proposed RRC-SM provides more than 50% reduction on the total processing latency and 75% reduction on the number of servers in NSC than other existing models.
doi_str_mv 10.1109/TII.2022.3145846
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9693188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9693188</ieee_id><sourcerecordid>2716346963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-2136140a443d75ace9be36dd1f37bda1cf0cad8d8c896fa0d4f386931f461c5a3</originalsourceid><addsrcrecordid>eNo9kM9LAzEQhYMoWKt3wcuC560zO9ns5lhLtYWqUCoeQ5ofJaXd1Oz24H_vloqnmcP73oOPsXuEESLIp9V8PiqgKEaEvKy5uGADlBxzgBIu-78sMacC6JrdtO0WgCogOWBvU--DCa7pskXUNnvWO92Y0GwyH1M2c51LceMaF49tttQ2xHzpDrtgdBdik0_ifh0aZ3t2qb_G77fsyutd6-7-7pB9vkxXk1m--HidT8aL3BQSu7xAEshBc062KrVxcu1IWIueqrXVaDwYbWtbm1oKr8FyT7WQhJ4LNKWmIXs89x5S_D66tlPbeExNP6mKCgVxIQX1KTinTIptm5xXhxT2Ov0oBHWSpnpp6iRN_UnrkYczEpxz_3F52q5r-gVs72ed</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716346963</pqid></control><display><type>article</type><title>Efficient Load Balancing for Heterogeneous Radio-Replication-Combined LoRaWAN</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Liu, Yucheng ; Tsang, Kim-Fung ; Zhu, Hongxu ; Chi, Hao Ran ; Wei, Yang ; Wang, Hao ; Wu, Chung Kit</creator><creatorcontrib>Liu, Yucheng ; Tsang, Kim-Fung ; Zhu, Hongxu ; Chi, Hao Ran ; Wei, Yang ; Wang, Hao ; Wu, Chung Kit</creatorcontrib><description>LoRa wide area network (LoRaWAN), an emerging IoT protocol, has been popularized in large-scale applications, given its long-range and low-power properties. Hitherto, there is no appropriate traffic model for LoRaWAN to estimate the heterogeneous arriving traffic at the network server cluster (NSC). Inefficient computation power planning or even processing failure might be further caused. Radio replication, commonly existed in the arriving traffic at NSC in LoRaWAN, also causes difficulty estimating the makespan (i.e., mean processing time in NSC). To overcome the abovementioned limitations, a heterogeneous radio-replication-aware traffic aggregation model is proposed to estimate the arriving traffic for LoRaWAN. In addition, a radio-replication-combined supermarket model (RRC-SM), on top of HTAM, is proposed to achieve load balancing among servers in LoRaWAN. Furthermore, a nondominated sorting genetic algorithm based on multiobjective optimization is developed to simultaneously minimize cost and latency on NSC. Experiments reveal that the proposed HTAM and RRC-SM agree well with the simulation outcome. Under the arriving traffic estimated as 6.16 erlangs with four radio replications of each arriving packet on average, the proposed RRC-SM provides more than 50% reduction on the total processing latency and 75% reduction on the number of servers in NSC than other existing models.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2022.3145846</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Computational modeling ; Costs ; Genetic algorithms ; Heterogeneous traffic aggregation model (HTAM) ; Load balancing ; Load management ; Load modeling ; Logic gates ; Multiple objective analysis ; network server cluster (NSC) ; Network servers ; Optimization ; optimized load balancing (LB) for LoRa wide area network (LoRaWAN) ; radio-replication-combined supermarket model (RRC-SM) ; Replication ; Servers ; Sorting algorithms ; Traffic models ; Traffic planning ; Wide area networks</subject><ispartof>IEEE transactions on industrial informatics, 2022-11, Vol.18 (11), p.7400-7411</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-2136140a443d75ace9be36dd1f37bda1cf0cad8d8c896fa0d4f386931f461c5a3</citedby><cites>FETCH-LOGICAL-c291t-2136140a443d75ace9be36dd1f37bda1cf0cad8d8c896fa0d4f386931f461c5a3</cites><orcidid>0000-0002-5763-9935 ; 0000-0001-8135-4510 ; 0000-0002-8230-6294 ; 0000-0003-3393-6211 ; 0000-0001-9499-8446 ; 0000-0001-6257-7065 ; 0000-0002-8332-227X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9693188$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Liu, Yucheng</creatorcontrib><creatorcontrib>Tsang, Kim-Fung</creatorcontrib><creatorcontrib>Zhu, Hongxu</creatorcontrib><creatorcontrib>Chi, Hao Ran</creatorcontrib><creatorcontrib>Wei, Yang</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Wu, Chung Kit</creatorcontrib><title>Efficient Load Balancing for Heterogeneous Radio-Replication-Combined LoRaWAN</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>LoRa wide area network (LoRaWAN), an emerging IoT protocol, has been popularized in large-scale applications, given its long-range and low-power properties. Hitherto, there is no appropriate traffic model for LoRaWAN to estimate the heterogeneous arriving traffic at the network server cluster (NSC). Inefficient computation power planning or even processing failure might be further caused. Radio replication, commonly existed in the arriving traffic at NSC in LoRaWAN, also causes difficulty estimating the makespan (i.e., mean processing time in NSC). To overcome the abovementioned limitations, a heterogeneous radio-replication-aware traffic aggregation model is proposed to estimate the arriving traffic for LoRaWAN. In addition, a radio-replication-combined supermarket model (RRC-SM), on top of HTAM, is proposed to achieve load balancing among servers in LoRaWAN. Furthermore, a nondominated sorting genetic algorithm based on multiobjective optimization is developed to simultaneously minimize cost and latency on NSC. Experiments reveal that the proposed HTAM and RRC-SM agree well with the simulation outcome. Under the arriving traffic estimated as 6.16 erlangs with four radio replications of each arriving packet on average, the proposed RRC-SM provides more than 50% reduction on the total processing latency and 75% reduction on the number of servers in NSC than other existing models.</description><subject>Computational modeling</subject><subject>Costs</subject><subject>Genetic algorithms</subject><subject>Heterogeneous traffic aggregation model (HTAM)</subject><subject>Load balancing</subject><subject>Load management</subject><subject>Load modeling</subject><subject>Logic gates</subject><subject>Multiple objective analysis</subject><subject>network server cluster (NSC)</subject><subject>Network servers</subject><subject>Optimization</subject><subject>optimized load balancing (LB) for LoRa wide area network (LoRaWAN)</subject><subject>radio-replication-combined supermarket model (RRC-SM)</subject><subject>Replication</subject><subject>Servers</subject><subject>Sorting algorithms</subject><subject>Traffic models</subject><subject>Traffic planning</subject><subject>Wide area networks</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kM9LAzEQhYMoWKt3wcuC560zO9ns5lhLtYWqUCoeQ5ofJaXd1Oz24H_vloqnmcP73oOPsXuEESLIp9V8PiqgKEaEvKy5uGADlBxzgBIu-78sMacC6JrdtO0WgCogOWBvU--DCa7pskXUNnvWO92Y0GwyH1M2c51LceMaF49tttQ2xHzpDrtgdBdik0_ifh0aZ3t2qb_G77fsyutd6-7-7pB9vkxXk1m--HidT8aL3BQSu7xAEshBc062KrVxcu1IWIueqrXVaDwYbWtbm1oKr8FyT7WQhJ4LNKWmIXs89x5S_D66tlPbeExNP6mKCgVxIQX1KTinTIptm5xXhxT2Ov0oBHWSpnpp6iRN_UnrkYczEpxz_3F52q5r-gVs72ed</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Liu, Yucheng</creator><creator>Tsang, Kim-Fung</creator><creator>Zhu, Hongxu</creator><creator>Chi, Hao Ran</creator><creator>Wei, Yang</creator><creator>Wang, Hao</creator><creator>Wu, Chung Kit</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5763-9935</orcidid><orcidid>https://orcid.org/0000-0001-8135-4510</orcidid><orcidid>https://orcid.org/0000-0002-8230-6294</orcidid><orcidid>https://orcid.org/0000-0003-3393-6211</orcidid><orcidid>https://orcid.org/0000-0001-9499-8446</orcidid><orcidid>https://orcid.org/0000-0001-6257-7065</orcidid><orcidid>https://orcid.org/0000-0002-8332-227X</orcidid></search><sort><creationdate>20221101</creationdate><title>Efficient Load Balancing for Heterogeneous Radio-Replication-Combined LoRaWAN</title><author>Liu, Yucheng ; Tsang, Kim-Fung ; Zhu, Hongxu ; Chi, Hao Ran ; Wei, Yang ; Wang, Hao ; Wu, Chung Kit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-2136140a443d75ace9be36dd1f37bda1cf0cad8d8c896fa0d4f386931f461c5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computational modeling</topic><topic>Costs</topic><topic>Genetic algorithms</topic><topic>Heterogeneous traffic aggregation model (HTAM)</topic><topic>Load balancing</topic><topic>Load management</topic><topic>Load modeling</topic><topic>Logic gates</topic><topic>Multiple objective analysis</topic><topic>network server cluster (NSC)</topic><topic>Network servers</topic><topic>Optimization</topic><topic>optimized load balancing (LB) for LoRa wide area network (LoRaWAN)</topic><topic>radio-replication-combined supermarket model (RRC-SM)</topic><topic>Replication</topic><topic>Servers</topic><topic>Sorting algorithms</topic><topic>Traffic models</topic><topic>Traffic planning</topic><topic>Wide area networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yucheng</creatorcontrib><creatorcontrib>Tsang, Kim-Fung</creatorcontrib><creatorcontrib>Zhu, Hongxu</creatorcontrib><creatorcontrib>Chi, Hao Ran</creatorcontrib><creatorcontrib>Wei, Yang</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Wu, Chung Kit</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yucheng</au><au>Tsang, Kim-Fung</au><au>Zhu, Hongxu</au><au>Chi, Hao Ran</au><au>Wei, Yang</au><au>Wang, Hao</au><au>Wu, Chung Kit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Load Balancing for Heterogeneous Radio-Replication-Combined LoRaWAN</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>18</volume><issue>11</issue><spage>7400</spage><epage>7411</epage><pages>7400-7411</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>LoRa wide area network (LoRaWAN), an emerging IoT protocol, has been popularized in large-scale applications, given its long-range and low-power properties. Hitherto, there is no appropriate traffic model for LoRaWAN to estimate the heterogeneous arriving traffic at the network server cluster (NSC). Inefficient computation power planning or even processing failure might be further caused. Radio replication, commonly existed in the arriving traffic at NSC in LoRaWAN, also causes difficulty estimating the makespan (i.e., mean processing time in NSC). To overcome the abovementioned limitations, a heterogeneous radio-replication-aware traffic aggregation model is proposed to estimate the arriving traffic for LoRaWAN. In addition, a radio-replication-combined supermarket model (RRC-SM), on top of HTAM, is proposed to achieve load balancing among servers in LoRaWAN. Furthermore, a nondominated sorting genetic algorithm based on multiobjective optimization is developed to simultaneously minimize cost and latency on NSC. Experiments reveal that the proposed HTAM and RRC-SM agree well with the simulation outcome. Under the arriving traffic estimated as 6.16 erlangs with four radio replications of each arriving packet on average, the proposed RRC-SM provides more than 50% reduction on the total processing latency and 75% reduction on the number of servers in NSC than other existing models.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2022.3145846</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5763-9935</orcidid><orcidid>https://orcid.org/0000-0001-8135-4510</orcidid><orcidid>https://orcid.org/0000-0002-8230-6294</orcidid><orcidid>https://orcid.org/0000-0003-3393-6211</orcidid><orcidid>https://orcid.org/0000-0001-9499-8446</orcidid><orcidid>https://orcid.org/0000-0001-6257-7065</orcidid><orcidid>https://orcid.org/0000-0002-8332-227X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2022-11, Vol.18 (11), p.7400-7411
issn 1551-3203
1941-0050
language eng
recordid cdi_ieee_primary_9693188
source IEEE Electronic Library (IEL) Journals
subjects Computational modeling
Costs
Genetic algorithms
Heterogeneous traffic aggregation model (HTAM)
Load balancing
Load management
Load modeling
Logic gates
Multiple objective analysis
network server cluster (NSC)
Network servers
Optimization
optimized load balancing (LB) for LoRa wide area network (LoRaWAN)
radio-replication-combined supermarket model (RRC-SM)
Replication
Servers
Sorting algorithms
Traffic models
Traffic planning
Wide area networks
title Efficient Load Balancing for Heterogeneous Radio-Replication-Combined LoRaWAN
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A46%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Load%20Balancing%20for%20Heterogeneous%20Radio-Replication-Combined%20LoRaWAN&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Liu,%20Yucheng&rft.date=2022-11-01&rft.volume=18&rft.issue=11&rft.spage=7400&rft.epage=7411&rft.pages=7400-7411&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2022.3145846&rft_dat=%3Cproquest_ieee_%3E2716346963%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-2136140a443d75ace9be36dd1f37bda1cf0cad8d8c896fa0d4f386931f461c5a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2716346963&rft_id=info:pmid/&rft_ieee_id=9693188&rfr_iscdi=true