Loading…

Human In-Hand Motion Recognition Based on Multi-Modal Perception Information Fusion

A human in-hand motion (HIM) recognition system based on multi-modal perception information fusion is proposed in this paper, which can observe the state information between the object and the hand by using customized ten kinds of HIM manipulation in order to recognize the complex HIMs. First, combi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2022-04, Vol.22 (7), p.6793-6805
Main Authors: Xue, Yaxu, Yu, Yadong, Yin, Kaiyang, Li, Pengfei, Xie, Shuangxi, Ju, Zhaojie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c223t-490ebbf67cc7654d5feb229a8b1f88086605efe216e77c9b6879bacd51eb75443
cites cdi_FETCH-LOGICAL-c223t-490ebbf67cc7654d5feb229a8b1f88086605efe216e77c9b6879bacd51eb75443
container_end_page 6805
container_issue 7
container_start_page 6793
container_title IEEE sensors journal
container_volume 22
creator Xue, Yaxu
Yu, Yadong
Yin, Kaiyang
Li, Pengfei
Xie, Shuangxi
Ju, Zhaojie
description A human in-hand motion (HIM) recognition system based on multi-modal perception information fusion is proposed in this paper, which can observe the state information between the object and the hand by using customized ten kinds of HIM manipulation in order to recognize the complex HIMs. First, combined with the characteristics of HIM capture, ten kinds of HIM sets are designed, and finger trajectory, contact force and electromyographic signal data are acquired synchronously through the multi-modal data acquisition platform; second, motion segmentation is realized through the threshold segmentation method, the multi-modal signal preprocessing is realized by Empirical Mode Decomposition (EMD), and multi-modal signal feature extraction is realized by Maximum Lyapunov Exponent (MLE); then, a detailed non-linear data analysis is carried out. A detailed analysis and discussion are presented from the results of the Random Forest (RF) recognizing HIMs, the comparison results of motion recognition rates of different subjects, the comparison results of motion recognition rates of different perceptrons, and the comparison results of the motion recognition rates of different machine learning methods. The experimental results show that the multi-modal perception information based HIM recognition system proposed in this paper can effectively recognize ten different HIMs, with an accuracy rate of 93.72%.
doi_str_mv 10.1109/JSEN.2022.3148992
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9703362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9703362</ieee_id><sourcerecordid>2645986876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-490ebbf67cc7654d5feb229a8b1f88086605efe216e77c9b6879bacd51eb75443</originalsourceid><addsrcrecordid>eNo9kMtKw0AUhgdRsFYfQNwEXKfO_bLUYm2lVbEK7obJ5ERS2kydSRa-vekFV-eD8__nwIfQNcEjQrC5e14-vowopnTECNfG0BM0IELonCiuT3fMcM6Z-jpHFymtMCZGCTVAy2m3cU02a_Kpa8psEdo6NNk7-PDd1Ht-cAnKrIdFt27rfBFKt87eIHrY7vezpgpx4_Y86VI_LtFZ5dYJro5ziD4njx_jaT5_fZqN7-e5p5S1OTcYiqKSynslBS9FBQWlxumCVFpjLSUWUAElEpTyppBamcL5UhAolOCcDdHt4e42hp8OUmtXoYtN_9JSyYXRfUP2KXJI-RhSilDZbaw3Lv5agu3Ond25szt39uiu79wcOjUA_OeNwoxJyv4AYTpqiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645986876</pqid></control><display><type>article</type><title>Human In-Hand Motion Recognition Based on Multi-Modal Perception Information Fusion</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Xue, Yaxu ; Yu, Yadong ; Yin, Kaiyang ; Li, Pengfei ; Xie, Shuangxi ; Ju, Zhaojie</creator><creatorcontrib>Xue, Yaxu ; Yu, Yadong ; Yin, Kaiyang ; Li, Pengfei ; Xie, Shuangxi ; Ju, Zhaojie</creatorcontrib><description>A human in-hand motion (HIM) recognition system based on multi-modal perception information fusion is proposed in this paper, which can observe the state information between the object and the hand by using customized ten kinds of HIM manipulation in order to recognize the complex HIMs. First, combined with the characteristics of HIM capture, ten kinds of HIM sets are designed, and finger trajectory, contact force and electromyographic signal data are acquired synchronously through the multi-modal data acquisition platform; second, motion segmentation is realized through the threshold segmentation method, the multi-modal signal preprocessing is realized by Empirical Mode Decomposition (EMD), and multi-modal signal feature extraction is realized by Maximum Lyapunov Exponent (MLE); then, a detailed non-linear data analysis is carried out. A detailed analysis and discussion are presented from the results of the Random Forest (RF) recognizing HIMs, the comparison results of motion recognition rates of different subjects, the comparison results of motion recognition rates of different perceptrons, and the comparison results of the motion recognition rates of different machine learning methods. The experimental results show that the multi-modal perception information based HIM recognition system proposed in this paper can effectively recognize ten different HIMs, with an accuracy rate of 93.72%.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2022.3148992</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Character recognition ; Contact force ; Data acquisition ; Data analysis ; Data integration ; Empirical analysis ; empirical mode decomposition ; Feature extraction ; Force ; Gesture recognition ; human in-hand motion ; Human motion ; Liapunov exponents ; Machine learning ; maximum Lyapunov exponent ; Modal data ; Motion perception ; Multi-modal information ; random forest ; Recognition ; Segmentation ; Sensor phenomena and characterization ; Sensors ; Wavelet transforms</subject><ispartof>IEEE sensors journal, 2022-04, Vol.22 (7), p.6793-6805</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-490ebbf67cc7654d5feb229a8b1f88086605efe216e77c9b6879bacd51eb75443</citedby><cites>FETCH-LOGICAL-c223t-490ebbf67cc7654d5feb229a8b1f88086605efe216e77c9b6879bacd51eb75443</cites><orcidid>0000-0003-1718-9551 ; 0000-0001-9966-1324 ; 0000-0002-9218-4251 ; 0000-0003-4161-233X ; 0000-0002-9524-7609 ; 0000-0002-6721-2337</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9703362$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Xue, Yaxu</creatorcontrib><creatorcontrib>Yu, Yadong</creatorcontrib><creatorcontrib>Yin, Kaiyang</creatorcontrib><creatorcontrib>Li, Pengfei</creatorcontrib><creatorcontrib>Xie, Shuangxi</creatorcontrib><creatorcontrib>Ju, Zhaojie</creatorcontrib><title>Human In-Hand Motion Recognition Based on Multi-Modal Perception Information Fusion</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>A human in-hand motion (HIM) recognition system based on multi-modal perception information fusion is proposed in this paper, which can observe the state information between the object and the hand by using customized ten kinds of HIM manipulation in order to recognize the complex HIMs. First, combined with the characteristics of HIM capture, ten kinds of HIM sets are designed, and finger trajectory, contact force and electromyographic signal data are acquired synchronously through the multi-modal data acquisition platform; second, motion segmentation is realized through the threshold segmentation method, the multi-modal signal preprocessing is realized by Empirical Mode Decomposition (EMD), and multi-modal signal feature extraction is realized by Maximum Lyapunov Exponent (MLE); then, a detailed non-linear data analysis is carried out. A detailed analysis and discussion are presented from the results of the Random Forest (RF) recognizing HIMs, the comparison results of motion recognition rates of different subjects, the comparison results of motion recognition rates of different perceptrons, and the comparison results of the motion recognition rates of different machine learning methods. The experimental results show that the multi-modal perception information based HIM recognition system proposed in this paper can effectively recognize ten different HIMs, with an accuracy rate of 93.72%.</description><subject>Character recognition</subject><subject>Contact force</subject><subject>Data acquisition</subject><subject>Data analysis</subject><subject>Data integration</subject><subject>Empirical analysis</subject><subject>empirical mode decomposition</subject><subject>Feature extraction</subject><subject>Force</subject><subject>Gesture recognition</subject><subject>human in-hand motion</subject><subject>Human motion</subject><subject>Liapunov exponents</subject><subject>Machine learning</subject><subject>maximum Lyapunov exponent</subject><subject>Modal data</subject><subject>Motion perception</subject><subject>Multi-modal information</subject><subject>random forest</subject><subject>Recognition</subject><subject>Segmentation</subject><subject>Sensor phenomena and characterization</subject><subject>Sensors</subject><subject>Wavelet transforms</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kMtKw0AUhgdRsFYfQNwEXKfO_bLUYm2lVbEK7obJ5ERS2kydSRa-vekFV-eD8__nwIfQNcEjQrC5e14-vowopnTECNfG0BM0IELonCiuT3fMcM6Z-jpHFymtMCZGCTVAy2m3cU02a_Kpa8psEdo6NNk7-PDd1Ht-cAnKrIdFt27rfBFKt87eIHrY7vezpgpx4_Y86VI_LtFZ5dYJro5ziD4njx_jaT5_fZqN7-e5p5S1OTcYiqKSynslBS9FBQWlxumCVFpjLSUWUAElEpTyppBamcL5UhAolOCcDdHt4e42hp8OUmtXoYtN_9JSyYXRfUP2KXJI-RhSilDZbaw3Lv5agu3Ond25szt39uiu79wcOjUA_OeNwoxJyv4AYTpqiA</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Xue, Yaxu</creator><creator>Yu, Yadong</creator><creator>Yin, Kaiyang</creator><creator>Li, Pengfei</creator><creator>Xie, Shuangxi</creator><creator>Ju, Zhaojie</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1718-9551</orcidid><orcidid>https://orcid.org/0000-0001-9966-1324</orcidid><orcidid>https://orcid.org/0000-0002-9218-4251</orcidid><orcidid>https://orcid.org/0000-0003-4161-233X</orcidid><orcidid>https://orcid.org/0000-0002-9524-7609</orcidid><orcidid>https://orcid.org/0000-0002-6721-2337</orcidid></search><sort><creationdate>20220401</creationdate><title>Human In-Hand Motion Recognition Based on Multi-Modal Perception Information Fusion</title><author>Xue, Yaxu ; Yu, Yadong ; Yin, Kaiyang ; Li, Pengfei ; Xie, Shuangxi ; Ju, Zhaojie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-490ebbf67cc7654d5feb229a8b1f88086605efe216e77c9b6879bacd51eb75443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Character recognition</topic><topic>Contact force</topic><topic>Data acquisition</topic><topic>Data analysis</topic><topic>Data integration</topic><topic>Empirical analysis</topic><topic>empirical mode decomposition</topic><topic>Feature extraction</topic><topic>Force</topic><topic>Gesture recognition</topic><topic>human in-hand motion</topic><topic>Human motion</topic><topic>Liapunov exponents</topic><topic>Machine learning</topic><topic>maximum Lyapunov exponent</topic><topic>Modal data</topic><topic>Motion perception</topic><topic>Multi-modal information</topic><topic>random forest</topic><topic>Recognition</topic><topic>Segmentation</topic><topic>Sensor phenomena and characterization</topic><topic>Sensors</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Yaxu</creatorcontrib><creatorcontrib>Yu, Yadong</creatorcontrib><creatorcontrib>Yin, Kaiyang</creatorcontrib><creatorcontrib>Li, Pengfei</creatorcontrib><creatorcontrib>Xie, Shuangxi</creatorcontrib><creatorcontrib>Ju, Zhaojie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xue, Yaxu</au><au>Yu, Yadong</au><au>Yin, Kaiyang</au><au>Li, Pengfei</au><au>Xie, Shuangxi</au><au>Ju, Zhaojie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human In-Hand Motion Recognition Based on Multi-Modal Perception Information Fusion</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>22</volume><issue>7</issue><spage>6793</spage><epage>6805</epage><pages>6793-6805</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>A human in-hand motion (HIM) recognition system based on multi-modal perception information fusion is proposed in this paper, which can observe the state information between the object and the hand by using customized ten kinds of HIM manipulation in order to recognize the complex HIMs. First, combined with the characteristics of HIM capture, ten kinds of HIM sets are designed, and finger trajectory, contact force and electromyographic signal data are acquired synchronously through the multi-modal data acquisition platform; second, motion segmentation is realized through the threshold segmentation method, the multi-modal signal preprocessing is realized by Empirical Mode Decomposition (EMD), and multi-modal signal feature extraction is realized by Maximum Lyapunov Exponent (MLE); then, a detailed non-linear data analysis is carried out. A detailed analysis and discussion are presented from the results of the Random Forest (RF) recognizing HIMs, the comparison results of motion recognition rates of different subjects, the comparison results of motion recognition rates of different perceptrons, and the comparison results of the motion recognition rates of different machine learning methods. The experimental results show that the multi-modal perception information based HIM recognition system proposed in this paper can effectively recognize ten different HIMs, with an accuracy rate of 93.72%.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2022.3148992</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1718-9551</orcidid><orcidid>https://orcid.org/0000-0001-9966-1324</orcidid><orcidid>https://orcid.org/0000-0002-9218-4251</orcidid><orcidid>https://orcid.org/0000-0003-4161-233X</orcidid><orcidid>https://orcid.org/0000-0002-9524-7609</orcidid><orcidid>https://orcid.org/0000-0002-6721-2337</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2022-04, Vol.22 (7), p.6793-6805
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_9703362
source IEEE Electronic Library (IEL) Journals
subjects Character recognition
Contact force
Data acquisition
Data analysis
Data integration
Empirical analysis
empirical mode decomposition
Feature extraction
Force
Gesture recognition
human in-hand motion
Human motion
Liapunov exponents
Machine learning
maximum Lyapunov exponent
Modal data
Motion perception
Multi-modal information
random forest
Recognition
Segmentation
Sensor phenomena and characterization
Sensors
Wavelet transforms
title Human In-Hand Motion Recognition Based on Multi-Modal Perception Information Fusion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A33%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20In-Hand%20Motion%20Recognition%20Based%20on%20Multi-Modal%20Perception%20Information%20Fusion&rft.jtitle=IEEE%20sensors%20journal&rft.au=Xue,%20Yaxu&rft.date=2022-04-01&rft.volume=22&rft.issue=7&rft.spage=6793&rft.epage=6805&rft.pages=6793-6805&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2022.3148992&rft_dat=%3Cproquest_ieee_%3E2645986876%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c223t-490ebbf67cc7654d5feb229a8b1f88086605efe216e77c9b6879bacd51eb75443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2645986876&rft_id=info:pmid/&rft_ieee_id=9703362&rfr_iscdi=true