Loading…
SeeTek: Very Large-Scale Open-set Logo Recognition with Text-Aware Metric Learning
Recent advances in deep learning and computer vision have set new state of the art in logo recognition [2], [9], [36]. Logo recognition has mostly been approached as a closed-set object recognition problem and more recently as an open-set retrieval problem. Current approaches suffer from distinguish...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 596 |
container_issue | |
container_start_page | 587 |
container_title | |
container_volume | |
creator | Li, Chenge Fehervari, Istvan Zhao, Xiaonan Macedo, Ives Appalaraju, Srikar |
description | Recent advances in deep learning and computer vision have set new state of the art in logo recognition [2], [9], [36]. Logo recognition has mostly been approached as a closed-set object recognition problem and more recently as an open-set retrieval problem. Current approaches suffer from distinguishing visually similar logos, especially in open-set retrieval for very large-scale applications with thousands of brands. To address the problem, we propose a multi-task learning architecture of deep metric learning and scene text recognition. We use brand names as weak labels and enforce the model to simultaneously extract distinct visual features as well as predict brand name text. To achieve it, we collected a dataset with 3 Million logos cropped from Amazon Product Catalog images across nearly 8K brands, named PL8K. Our experiments show that adding the task of text recognition during training boosts the model's retrieval performance both on our PL8K dataset and on five other public logo datasets. |
doi_str_mv | 10.1109/WACV51458.2022.00066 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9706752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9706752</ieee_id><sourcerecordid>9706752</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-4e21f556a223c86bb6d0d07de014cfbe2de5edaac37cbda0e9cd34bd289961bb3</originalsourceid><addsrcrecordid>eNotzLtOwzAUAFCDhERb-AIY_AMu13bsxGxRxEsKqtSGMlZ-3ARDSSonUunfM8B0tkPILYcl52Du3stqq3imiqUAIZYAoPUZmXOtVQaGKzgnM6EzwYws-CWZj-MngDTcyBlZbxAb_LqnW0wnWtvUIdt4u0e6OmDPRpxoPXQDXaMfuj5OcejpMU4ftMGfiZVHm5C-4pSipzXa1Me-uyIXrd2PeP3vgrw9PjTVM6tXTy9VWbMoQE4sQ8FbpbQVQvpCO6cDBMgDAs9861AEVBis9TL3LlhA44PMXBCFMZo7Jxfk5u-NiLg7pPht02lnctC5EvIXk-9QUg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>SeeTek: Very Large-Scale Open-set Logo Recognition with Text-Aware Metric Learning</title><source>IEEE Xplore All Conference Series</source><creator>Li, Chenge ; Fehervari, Istvan ; Zhao, Xiaonan ; Macedo, Ives ; Appalaraju, Srikar</creator><creatorcontrib>Li, Chenge ; Fehervari, Istvan ; Zhao, Xiaonan ; Macedo, Ives ; Appalaraju, Srikar</creatorcontrib><description>Recent advances in deep learning and computer vision have set new state of the art in logo recognition [2], [9], [36]. Logo recognition has mostly been approached as a closed-set object recognition problem and more recently as an open-set retrieval problem. Current approaches suffer from distinguishing visually similar logos, especially in open-set retrieval for very large-scale applications with thousands of brands. To address the problem, we propose a multi-task learning architecture of deep metric learning and scene text recognition. We use brand names as weak labels and enforce the model to simultaneously extract distinct visual features as well as predict brand name text. To achieve it, we collected a dataset with 3 Million logos cropped from Amazon Product Catalog images across nearly 8K brands, named PL8K. Our experiments show that adding the task of text recognition during training boosts the model's retrieval performance both on our PL8K dataset and on five other public logo datasets.</description><identifier>EISSN: 2642-9381</identifier><identifier>EISBN: 1665409150</identifier><identifier>EISBN: 9781665409155</identifier><identifier>DOI: 10.1109/WACV51458.2022.00066</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer vision ; Feature extraction ; Image/Video Indexing and Retrieval ; Large-scale Vision Applications; Object Detection/Recognition/Categorization; Transfer; Few-shot; Semi- and Un- supervised Learning; Vision and Languages ; Measurement ; Predictive models ; Text recognition ; Training ; Visualization</subject><ispartof>2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2022, p.587-596</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9706752$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9706752$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Chenge</creatorcontrib><creatorcontrib>Fehervari, Istvan</creatorcontrib><creatorcontrib>Zhao, Xiaonan</creatorcontrib><creatorcontrib>Macedo, Ives</creatorcontrib><creatorcontrib>Appalaraju, Srikar</creatorcontrib><title>SeeTek: Very Large-Scale Open-set Logo Recognition with Text-Aware Metric Learning</title><title>2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)</title><addtitle>WACV</addtitle><description>Recent advances in deep learning and computer vision have set new state of the art in logo recognition [2], [9], [36]. Logo recognition has mostly been approached as a closed-set object recognition problem and more recently as an open-set retrieval problem. Current approaches suffer from distinguishing visually similar logos, especially in open-set retrieval for very large-scale applications with thousands of brands. To address the problem, we propose a multi-task learning architecture of deep metric learning and scene text recognition. We use brand names as weak labels and enforce the model to simultaneously extract distinct visual features as well as predict brand name text. To achieve it, we collected a dataset with 3 Million logos cropped from Amazon Product Catalog images across nearly 8K brands, named PL8K. Our experiments show that adding the task of text recognition during training boosts the model's retrieval performance both on our PL8K dataset and on five other public logo datasets.</description><subject>Computer vision</subject><subject>Feature extraction</subject><subject>Image/Video Indexing and Retrieval ; Large-scale Vision Applications; Object Detection/Recognition/Categorization; Transfer; Few-shot; Semi- and Un- supervised Learning; Vision and Languages</subject><subject>Measurement</subject><subject>Predictive models</subject><subject>Text recognition</subject><subject>Training</subject><subject>Visualization</subject><issn>2642-9381</issn><isbn>1665409150</isbn><isbn>9781665409155</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotzLtOwzAUAFCDhERb-AIY_AMu13bsxGxRxEsKqtSGMlZ-3ARDSSonUunfM8B0tkPILYcl52Du3stqq3imiqUAIZYAoPUZmXOtVQaGKzgnM6EzwYws-CWZj-MngDTcyBlZbxAb_LqnW0wnWtvUIdt4u0e6OmDPRpxoPXQDXaMfuj5OcejpMU4ftMGfiZVHm5C-4pSipzXa1Me-uyIXrd2PeP3vgrw9PjTVM6tXTy9VWbMoQE4sQ8FbpbQVQvpCO6cDBMgDAs9861AEVBis9TL3LlhA44PMXBCFMZo7Jxfk5u-NiLg7pPht02lnctC5EvIXk-9QUg</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Li, Chenge</creator><creator>Fehervari, Istvan</creator><creator>Zhao, Xiaonan</creator><creator>Macedo, Ives</creator><creator>Appalaraju, Srikar</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202201</creationdate><title>SeeTek: Very Large-Scale Open-set Logo Recognition with Text-Aware Metric Learning</title><author>Li, Chenge ; Fehervari, Istvan ; Zhao, Xiaonan ; Macedo, Ives ; Appalaraju, Srikar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-4e21f556a223c86bb6d0d07de014cfbe2de5edaac37cbda0e9cd34bd289961bb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computer vision</topic><topic>Feature extraction</topic><topic>Image/Video Indexing and Retrieval ; Large-scale Vision Applications; Object Detection/Recognition/Categorization; Transfer; Few-shot; Semi- and Un- supervised Learning; Vision and Languages</topic><topic>Measurement</topic><topic>Predictive models</topic><topic>Text recognition</topic><topic>Training</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Chenge</creatorcontrib><creatorcontrib>Fehervari, Istvan</creatorcontrib><creatorcontrib>Zhao, Xiaonan</creatorcontrib><creatorcontrib>Macedo, Ives</creatorcontrib><creatorcontrib>Appalaraju, Srikar</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Chenge</au><au>Fehervari, Istvan</au><au>Zhao, Xiaonan</au><au>Macedo, Ives</au><au>Appalaraju, Srikar</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>SeeTek: Very Large-Scale Open-set Logo Recognition with Text-Aware Metric Learning</atitle><btitle>2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)</btitle><stitle>WACV</stitle><date>2022-01</date><risdate>2022</risdate><spage>587</spage><epage>596</epage><pages>587-596</pages><eissn>2642-9381</eissn><eisbn>1665409150</eisbn><eisbn>9781665409155</eisbn><coden>IEEPAD</coden><abstract>Recent advances in deep learning and computer vision have set new state of the art in logo recognition [2], [9], [36]. Logo recognition has mostly been approached as a closed-set object recognition problem and more recently as an open-set retrieval problem. Current approaches suffer from distinguishing visually similar logos, especially in open-set retrieval for very large-scale applications with thousands of brands. To address the problem, we propose a multi-task learning architecture of deep metric learning and scene text recognition. We use brand names as weak labels and enforce the model to simultaneously extract distinct visual features as well as predict brand name text. To achieve it, we collected a dataset with 3 Million logos cropped from Amazon Product Catalog images across nearly 8K brands, named PL8K. Our experiments show that adding the task of text recognition during training boosts the model's retrieval performance both on our PL8K dataset and on five other public logo datasets.</abstract><pub>IEEE</pub><doi>10.1109/WACV51458.2022.00066</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2642-9381 |
ispartof | 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2022, p.587-596 |
issn | 2642-9381 |
language | eng |
recordid | cdi_ieee_primary_9706752 |
source | IEEE Xplore All Conference Series |
subjects | Computer vision Feature extraction Image/Video Indexing and Retrieval Large-scale Vision Applications Object Detection/Recognition/Categorization Transfer Few-shot Semi- and Un- supervised Learning Vision and Languages Measurement Predictive models Text recognition Training Visualization |
title | SeeTek: Very Large-Scale Open-set Logo Recognition with Text-Aware Metric Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A53%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=SeeTek:%20Very%20Large-Scale%20Open-set%20Logo%20Recognition%20with%20Text-Aware%20Metric%20Learning&rft.btitle=2022%20IEEE/CVF%20Winter%20Conference%20on%20Applications%20of%20Computer%20Vision%20(WACV)&rft.au=Li,%20Chenge&rft.date=2022-01&rft.spage=587&rft.epage=596&rft.pages=587-596&rft.eissn=2642-9381&rft.coden=IEEPAD&rft_id=info:doi/10.1109/WACV51458.2022.00066&rft.eisbn=1665409150&rft.eisbn_list=9781665409155&rft_dat=%3Cieee_CHZPO%3E9706752%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-4e21f556a223c86bb6d0d07de014cfbe2de5edaac37cbda0e9cd34bd289961bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9706752&rfr_iscdi=true |