Loading…
REFICS: A Step Towards Linking Vision with Hardware Assurance
Hardware assurance is a key process in ensuring the integrity, security and functionality of a hardware device. Its heavy reliance on images, especially on Scanning Electron Microscopy images, makes it an excellent candidate for the vision community. The goal of this paper is to provide a pathway fo...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3470 |
container_issue | |
container_start_page | 3461 |
container_title | |
container_volume | |
creator | Wilson, Ronald Lu, Hangwei Zhu, Mengdi Forte, Domenic Woodard, Damon L. |
description | Hardware assurance is a key process in ensuring the integrity, security and functionality of a hardware device. Its heavy reliance on images, especially on Scanning Electron Microscopy images, makes it an excellent candidate for the vision community. The goal of this paper is to provide a pathway for inter-community collaboration by introducing the existing challenges for hardware assurance on integrated circuits in the context of computer vision and support further development using a large-scale dataset with 800,000 images. A detailed benchmark of existing vision approaches in hardware assurance on the dataset is also included for quantitative insights into the problem. |
doi_str_mv | 10.1109/WACV51458.2022.00352 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9707006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9707006</ieee_id><sourcerecordid>9707006</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-fdec251e3805f1c68c169c23111b0afd64532cd680ed44561545f7758ba033d23</originalsourceid><addsrcrecordid>eNotjN1KwzAYQKMguE2fQC_yAp3fl-RLE8GLUjY3KAhuzsuRpanGn240HcO3t6BX5-IcDmO3CFNEsHevRbkhVGSmAoSYAkgSZ2yMWpMCiwTnbCS0EpmVBi_ZOKWPobFo5Yg9PM_my3J1zwu-6sOBr_cn19WJV7H9jO0b38QU9y0_xf6dLwYz2MCLlI6da324YheN-0rh-p8T9jKfrctFVj09LsuiyqIA2WdNHbwgDNIANei18aitFxIRd-CaWiuSwtfaQKiVIo2kqMlzMjsHUtZCTtjN3zeGELaHLn677mdrc8gBtPwFsOxGRw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>REFICS: A Step Towards Linking Vision with Hardware Assurance</title><source>IEEE Xplore All Conference Series</source><creator>Wilson, Ronald ; Lu, Hangwei ; Zhu, Mengdi ; Forte, Domenic ; Woodard, Damon L.</creator><creatorcontrib>Wilson, Ronald ; Lu, Hangwei ; Zhu, Mengdi ; Forte, Domenic ; Woodard, Damon L.</creatorcontrib><description>Hardware assurance is a key process in ensuring the integrity, security and functionality of a hardware device. Its heavy reliance on images, especially on Scanning Electron Microscopy images, makes it an excellent candidate for the vision community. The goal of this paper is to provide a pathway for inter-community collaboration by introducing the existing challenges for hardware assurance on integrated circuits in the context of computer vision and support further development using a large-scale dataset with 800,000 images. A detailed benchmark of existing vision approaches in hardware assurance on the dataset is also included for quantitative insights into the problem.</description><identifier>EISSN: 2642-9381</identifier><identifier>EISBN: 1665409150</identifier><identifier>EISBN: 9781665409155</identifier><identifier>DOI: 10.1109/WACV51458.2022.00352</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Benchmark testing ; Collaboration ; Computer vision ; Datasets; Evaluation and Comparison of Vision Algorithms Image Processing; Segmentation; Grouping and Shape ; Hardware ; Integrated circuits ; Layout ; Scanning electron microscopy</subject><ispartof>2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2022, p.3461-3470</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9707006$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9707006$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wilson, Ronald</creatorcontrib><creatorcontrib>Lu, Hangwei</creatorcontrib><creatorcontrib>Zhu, Mengdi</creatorcontrib><creatorcontrib>Forte, Domenic</creatorcontrib><creatorcontrib>Woodard, Damon L.</creatorcontrib><title>REFICS: A Step Towards Linking Vision with Hardware Assurance</title><title>2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)</title><addtitle>WACV</addtitle><description>Hardware assurance is a key process in ensuring the integrity, security and functionality of a hardware device. Its heavy reliance on images, especially on Scanning Electron Microscopy images, makes it an excellent candidate for the vision community. The goal of this paper is to provide a pathway for inter-community collaboration by introducing the existing challenges for hardware assurance on integrated circuits in the context of computer vision and support further development using a large-scale dataset with 800,000 images. A detailed benchmark of existing vision approaches in hardware assurance on the dataset is also included for quantitative insights into the problem.</description><subject>Benchmark testing</subject><subject>Collaboration</subject><subject>Computer vision</subject><subject>Datasets; Evaluation and Comparison of Vision Algorithms Image Processing; Segmentation; Grouping and Shape</subject><subject>Hardware</subject><subject>Integrated circuits</subject><subject>Layout</subject><subject>Scanning electron microscopy</subject><issn>2642-9381</issn><isbn>1665409150</isbn><isbn>9781665409155</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjN1KwzAYQKMguE2fQC_yAp3fl-RLE8GLUjY3KAhuzsuRpanGn240HcO3t6BX5-IcDmO3CFNEsHevRbkhVGSmAoSYAkgSZ2yMWpMCiwTnbCS0EpmVBi_ZOKWPobFo5Yg9PM_my3J1zwu-6sOBr_cn19WJV7H9jO0b38QU9y0_xf6dLwYz2MCLlI6da324YheN-0rh-p8T9jKfrctFVj09LsuiyqIA2WdNHbwgDNIANei18aitFxIRd-CaWiuSwtfaQKiVIo2kqMlzMjsHUtZCTtjN3zeGELaHLn677mdrc8gBtPwFsOxGRw</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Wilson, Ronald</creator><creator>Lu, Hangwei</creator><creator>Zhu, Mengdi</creator><creator>Forte, Domenic</creator><creator>Woodard, Damon L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202201</creationdate><title>REFICS: A Step Towards Linking Vision with Hardware Assurance</title><author>Wilson, Ronald ; Lu, Hangwei ; Zhu, Mengdi ; Forte, Domenic ; Woodard, Damon L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-fdec251e3805f1c68c169c23111b0afd64532cd680ed44561545f7758ba033d23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Benchmark testing</topic><topic>Collaboration</topic><topic>Computer vision</topic><topic>Datasets; Evaluation and Comparison of Vision Algorithms Image Processing; Segmentation; Grouping and Shape</topic><topic>Hardware</topic><topic>Integrated circuits</topic><topic>Layout</topic><topic>Scanning electron microscopy</topic><toplevel>online_resources</toplevel><creatorcontrib>Wilson, Ronald</creatorcontrib><creatorcontrib>Lu, Hangwei</creatorcontrib><creatorcontrib>Zhu, Mengdi</creatorcontrib><creatorcontrib>Forte, Domenic</creatorcontrib><creatorcontrib>Woodard, Damon L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wilson, Ronald</au><au>Lu, Hangwei</au><au>Zhu, Mengdi</au><au>Forte, Domenic</au><au>Woodard, Damon L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>REFICS: A Step Towards Linking Vision with Hardware Assurance</atitle><btitle>2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)</btitle><stitle>WACV</stitle><date>2022-01</date><risdate>2022</risdate><spage>3461</spage><epage>3470</epage><pages>3461-3470</pages><eissn>2642-9381</eissn><eisbn>1665409150</eisbn><eisbn>9781665409155</eisbn><coden>IEEPAD</coden><abstract>Hardware assurance is a key process in ensuring the integrity, security and functionality of a hardware device. Its heavy reliance on images, especially on Scanning Electron Microscopy images, makes it an excellent candidate for the vision community. The goal of this paper is to provide a pathway for inter-community collaboration by introducing the existing challenges for hardware assurance on integrated circuits in the context of computer vision and support further development using a large-scale dataset with 800,000 images. A detailed benchmark of existing vision approaches in hardware assurance on the dataset is also included for quantitative insights into the problem.</abstract><pub>IEEE</pub><doi>10.1109/WACV51458.2022.00352</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2642-9381 |
ispartof | 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2022, p.3461-3470 |
issn | 2642-9381 |
language | eng |
recordid | cdi_ieee_primary_9707006 |
source | IEEE Xplore All Conference Series |
subjects | Benchmark testing Collaboration Computer vision Datasets Evaluation and Comparison of Vision Algorithms Image Processing Segmentation Grouping and Shape Hardware Integrated circuits Layout Scanning electron microscopy |
title | REFICS: A Step Towards Linking Vision with Hardware Assurance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A24%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=REFICS:%20A%20Step%20Towards%20Linking%20Vision%20with%20Hardware%20Assurance&rft.btitle=2022%20IEEE/CVF%20Winter%20Conference%20on%20Applications%20of%20Computer%20Vision%20(WACV)&rft.au=Wilson,%20Ronald&rft.date=2022-01&rft.spage=3461&rft.epage=3470&rft.pages=3461-3470&rft.eissn=2642-9381&rft.coden=IEEPAD&rft_id=info:doi/10.1109/WACV51458.2022.00352&rft.eisbn=1665409150&rft.eisbn_list=9781665409155&rft_dat=%3Cieee_CHZPO%3E9707006%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-fdec251e3805f1c68c169c23111b0afd64532cd680ed44561545f7758ba033d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9707006&rfr_iscdi=true |