Loading…
Single- and Multiagent Actor-Critic for Initial UAV's Deployment and 3-D Trajectory Design
This article considers a wireless network consisting of unmanned aerial vehicles (UAVs), deployed as aerial base stations, and a large number of terrestrial users randomly distributed in a dense urban area. The main objective of this work is to maximize the downlink rate of users along with clusteri...
Saved in:
Published in: | IEEE internet of things journal 2022-08, Vol.9 (16), p.15372-15389 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c223t-1f1ee35dea3e6b49a09521015d139b55c6e808c4d749734e424540cb44e8020e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c223t-1f1ee35dea3e6b49a09521015d139b55c6e808c4d749734e424540cb44e8020e3 |
container_end_page | 15389 |
container_issue | 16 |
container_start_page | 15372 |
container_title | IEEE internet of things journal |
container_volume | 9 |
creator | Nasr-Azadani, Maedeh Abouei, Jamshid Plataniotis, Konstantinos N. |
description | This article considers a wireless network consisting of unmanned aerial vehicles (UAVs), deployed as aerial base stations, and a large number of terrestrial users randomly distributed in a dense urban area. The main objective of this work is to maximize the downlink rate of users along with clustering of users and 2-D initial placement of UAVs, which effectively minimizes the clustering error. To achieve this goal, we estimate the next users' locations with deep echo-state network (ESN) to find the movement pattern of users with high accuracy. Then, we propose the single- and multiagent actor-critic (AC) algorithms for UAVs' initial deployment and trajectory design, where the multiagent scheme employs an efficient bandwidth allocation. Simulation results supported by a real data set of the terrestrial users' coordinates indicate that, when the deep ESN algorithm is used, the accuracy is 93.75% for longitude and 88.36% for latitude compared to the simple ESN performance. Moreover, the use of single- and multiagent AC algorithms display better performance in terms of downlink rate and convergence speed than value-based algorithms such as deep Q -network schemes. |
doi_str_mv | 10.1109/JIOT.2022.3150184 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9708435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9708435</ieee_id><sourcerecordid>2700415353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-1f1ee35dea3e6b49a09521015d139b55c6e808c4d749734e424540cb44e8020e3</originalsourceid><addsrcrecordid>eNpNkE9PwkAQxTdGEwnyAYyXTTx4Ks7-a9kjAVEMhoPgwctm2U5JSWlxtxz49m4DMZ7mZd77zSSPkHsGQ8ZAP7_Pl6shB86HgilgI3lFelzwLJFpyq__6VsyCGEHABFTTKc98v1Z1tsKE2rrnH4cq7a0W6xbOnZt45OJL9vS0aLxdF5HaSu6Hn89BTrFQ9Wc9l2yA0UypStvd9hRp-iGclvfkZvCVgEHl9kn69nLavKWLJav88l4kTjORZuwgiEKlaMVmG6ktqAVZ8BUzoTeKOVSHMHIyTyTOhMSJZdKgttIGfccUPTJ4_nuwTc_Rwyt2TVHX8eXhmcAkimhREyxc8r5JgSPhTn4cm_9yTAwXYuma9F0LZpLi5F5ODMlIv7ldQbRU-IXtKlrHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700415353</pqid></control><display><type>article</type><title>Single- and Multiagent Actor-Critic for Initial UAV's Deployment and 3-D Trajectory Design</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Nasr-Azadani, Maedeh ; Abouei, Jamshid ; Plataniotis, Konstantinos N.</creator><creatorcontrib>Nasr-Azadani, Maedeh ; Abouei, Jamshid ; Plataniotis, Konstantinos N.</creatorcontrib><description>This article considers a wireless network consisting of unmanned aerial vehicles (UAVs), deployed as aerial base stations, and a large number of terrestrial users randomly distributed in a dense urban area. The main objective of this work is to maximize the downlink rate of users along with clustering of users and 2-D initial placement of UAVs, which effectively minimizes the clustering error. To achieve this goal, we estimate the next users' locations with deep echo-state network (ESN) to find the movement pattern of users with high accuracy. Then, we propose the single- and multiagent actor-critic (AC) algorithms for UAVs' initial deployment and trajectory design, where the multiagent scheme employs an efficient bandwidth allocation. Simulation results supported by a real data set of the terrestrial users' coordinates indicate that, when the deep ESN algorithm is used, the accuracy is 93.75% for longitude and 88.36% for latitude compared to the simple ESN performance. Moreover, the use of single- and multiagent AC algorithms display better performance in terms of downlink rate and convergence speed than value-based algorithms such as deep <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-network schemes.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2022.3150184</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Autonomous aerial vehicles ; Clustering ; Deep reinforcement learning (DRL) ; Downlinking ; echo-state network (ESN) ; initial unmanned aerial vehicles’ (UAVs) deployment ; Interference ; Internet of Things ; Multiagent systems ; Quality of service ; Radio equipment ; single- and multi-agent actor–critic (AC) algorithms ; Three-dimensional displays ; Trajectory ; UAVs’ trajectory ; Unmanned aerial vehicles ; Urban areas ; Wireless networks</subject><ispartof>IEEE internet of things journal, 2022-08, Vol.9 (16), p.15372-15389</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-1f1ee35dea3e6b49a09521015d139b55c6e808c4d749734e424540cb44e8020e3</citedby><cites>FETCH-LOGICAL-c223t-1f1ee35dea3e6b49a09521015d139b55c6e808c4d749734e424540cb44e8020e3</cites><orcidid>0000-0002-2608-6100 ; 0000-0003-3647-5473</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9708435$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27900,27901,54770</link.rule.ids></links><search><creatorcontrib>Nasr-Azadani, Maedeh</creatorcontrib><creatorcontrib>Abouei, Jamshid</creatorcontrib><creatorcontrib>Plataniotis, Konstantinos N.</creatorcontrib><title>Single- and Multiagent Actor-Critic for Initial UAV's Deployment and 3-D Trajectory Design</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>This article considers a wireless network consisting of unmanned aerial vehicles (UAVs), deployed as aerial base stations, and a large number of terrestrial users randomly distributed in a dense urban area. The main objective of this work is to maximize the downlink rate of users along with clustering of users and 2-D initial placement of UAVs, which effectively minimizes the clustering error. To achieve this goal, we estimate the next users' locations with deep echo-state network (ESN) to find the movement pattern of users with high accuracy. Then, we propose the single- and multiagent actor-critic (AC) algorithms for UAVs' initial deployment and trajectory design, where the multiagent scheme employs an efficient bandwidth allocation. Simulation results supported by a real data set of the terrestrial users' coordinates indicate that, when the deep ESN algorithm is used, the accuracy is 93.75% for longitude and 88.36% for latitude compared to the simple ESN performance. Moreover, the use of single- and multiagent AC algorithms display better performance in terms of downlink rate and convergence speed than value-based algorithms such as deep <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-network schemes.</description><subject>Algorithms</subject><subject>Autonomous aerial vehicles</subject><subject>Clustering</subject><subject>Deep reinforcement learning (DRL)</subject><subject>Downlinking</subject><subject>echo-state network (ESN)</subject><subject>initial unmanned aerial vehicles’ (UAVs) deployment</subject><subject>Interference</subject><subject>Internet of Things</subject><subject>Multiagent systems</subject><subject>Quality of service</subject><subject>Radio equipment</subject><subject>single- and multi-agent actor–critic (AC) algorithms</subject><subject>Three-dimensional displays</subject><subject>Trajectory</subject><subject>UAVs’ trajectory</subject><subject>Unmanned aerial vehicles</subject><subject>Urban areas</subject><subject>Wireless networks</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkE9PwkAQxTdGEwnyAYyXTTx4Ks7-a9kjAVEMhoPgwctm2U5JSWlxtxz49m4DMZ7mZd77zSSPkHsGQ8ZAP7_Pl6shB86HgilgI3lFelzwLJFpyq__6VsyCGEHABFTTKc98v1Z1tsKE2rrnH4cq7a0W6xbOnZt45OJL9vS0aLxdF5HaSu6Hn89BTrFQ9Wc9l2yA0UypStvd9hRp-iGclvfkZvCVgEHl9kn69nLavKWLJav88l4kTjORZuwgiEKlaMVmG6ktqAVZ8BUzoTeKOVSHMHIyTyTOhMSJZdKgttIGfccUPTJ4_nuwTc_Rwyt2TVHX8eXhmcAkimhREyxc8r5JgSPhTn4cm_9yTAwXYuma9F0LZpLi5F5ODMlIv7ldQbRU-IXtKlrHg</recordid><startdate>20220815</startdate><enddate>20220815</enddate><creator>Nasr-Azadani, Maedeh</creator><creator>Abouei, Jamshid</creator><creator>Plataniotis, Konstantinos N.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2608-6100</orcidid><orcidid>https://orcid.org/0000-0003-3647-5473</orcidid></search><sort><creationdate>20220815</creationdate><title>Single- and Multiagent Actor-Critic for Initial UAV's Deployment and 3-D Trajectory Design</title><author>Nasr-Azadani, Maedeh ; Abouei, Jamshid ; Plataniotis, Konstantinos N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-1f1ee35dea3e6b49a09521015d139b55c6e808c4d749734e424540cb44e8020e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Autonomous aerial vehicles</topic><topic>Clustering</topic><topic>Deep reinforcement learning (DRL)</topic><topic>Downlinking</topic><topic>echo-state network (ESN)</topic><topic>initial unmanned aerial vehicles’ (UAVs) deployment</topic><topic>Interference</topic><topic>Internet of Things</topic><topic>Multiagent systems</topic><topic>Quality of service</topic><topic>Radio equipment</topic><topic>single- and multi-agent actor–critic (AC) algorithms</topic><topic>Three-dimensional displays</topic><topic>Trajectory</topic><topic>UAVs’ trajectory</topic><topic>Unmanned aerial vehicles</topic><topic>Urban areas</topic><topic>Wireless networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Nasr-Azadani, Maedeh</creatorcontrib><creatorcontrib>Abouei, Jamshid</creatorcontrib><creatorcontrib>Plataniotis, Konstantinos N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nasr-Azadani, Maedeh</au><au>Abouei, Jamshid</au><au>Plataniotis, Konstantinos N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single- and Multiagent Actor-Critic for Initial UAV's Deployment and 3-D Trajectory Design</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2022-08-15</date><risdate>2022</risdate><volume>9</volume><issue>16</issue><spage>15372</spage><epage>15389</epage><pages>15372-15389</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>This article considers a wireless network consisting of unmanned aerial vehicles (UAVs), deployed as aerial base stations, and a large number of terrestrial users randomly distributed in a dense urban area. The main objective of this work is to maximize the downlink rate of users along with clustering of users and 2-D initial placement of UAVs, which effectively minimizes the clustering error. To achieve this goal, we estimate the next users' locations with deep echo-state network (ESN) to find the movement pattern of users with high accuracy. Then, we propose the single- and multiagent actor-critic (AC) algorithms for UAVs' initial deployment and trajectory design, where the multiagent scheme employs an efficient bandwidth allocation. Simulation results supported by a real data set of the terrestrial users' coordinates indicate that, when the deep ESN algorithm is used, the accuracy is 93.75% for longitude and 88.36% for latitude compared to the simple ESN performance. Moreover, the use of single- and multiagent AC algorithms display better performance in terms of downlink rate and convergence speed than value-based algorithms such as deep <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-network schemes.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2022.3150184</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-2608-6100</orcidid><orcidid>https://orcid.org/0000-0003-3647-5473</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2022-08, Vol.9 (16), p.15372-15389 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_ieee_primary_9708435 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Autonomous aerial vehicles Clustering Deep reinforcement learning (DRL) Downlinking echo-state network (ESN) initial unmanned aerial vehicles’ (UAVs) deployment Interference Internet of Things Multiagent systems Quality of service Radio equipment single- and multi-agent actor–critic (AC) algorithms Three-dimensional displays Trajectory UAVs’ trajectory Unmanned aerial vehicles Urban areas Wireless networks |
title | Single- and Multiagent Actor-Critic for Initial UAV's Deployment and 3-D Trajectory Design |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-25T05%3A41%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-%20and%20Multiagent%20Actor-Critic%20for%20Initial%20UAV's%20Deployment%20and%203-D%20Trajectory%20Design&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Nasr-Azadani,%20Maedeh&rft.date=2022-08-15&rft.volume=9&rft.issue=16&rft.spage=15372&rft.epage=15389&rft.pages=15372-15389&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2022.3150184&rft_dat=%3Cproquest_ieee_%3E2700415353%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c223t-1f1ee35dea3e6b49a09521015d139b55c6e808c4d749734e424540cb44e8020e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2700415353&rft_id=info:pmid/&rft_ieee_id=9708435&rfr_iscdi=true |