Loading…
Compressive Near-Field Localization for Multipath RIS-Aided Environments
Reconfigurable intelligent surfaces (RISs) are considered among the key techniques to be adopted for sixth-generation cellular networks (6G) to enhance not only communications but also localization performance. In this regard, we propose a novel single-anchor localization algorithm for a state-of-th...
Saved in:
Published in: | IEEE communications letters 2022-06, Vol.26 (6), p.1268-1272 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2546-3375daf0a975a05db65fd5b8c45a398865fc4f048ae9b80cef7edc5411c03a2a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2546-3375daf0a975a05db65fd5b8c45a398865fc4f048ae9b80cef7edc5411c03a2a3 |
container_end_page | 1272 |
container_issue | 6 |
container_start_page | 1268 |
container_title | IEEE communications letters |
container_volume | 26 |
creator | Rinchi, Omar Elzanaty, Ahmed Alouini, Mohamed-Slim |
description | Reconfigurable intelligent surfaces (RISs) are considered among the key techniques to be adopted for sixth-generation cellular networks (6G) to enhance not only communications but also localization performance. In this regard, we propose a novel single-anchor localization algorithm for a state-of-the-art architecture where the position of the user equipment (UE) is to be estimated at the base station (BS) with the aid of a RIS. We consider a practical model that accounts for both near-field propagation and multipath environments. The proposed scheme relies on a compressed sensing (CS) technique tailored to address the issues associated with near-field localization and model mismatches. Also, the RIS phases are optimized to enhance the positioning performance, achieving more than one order of magnitude gain in the localization accuracy compared to RISs with non-optimized phases. |
doi_str_mv | 10.1109/LCOMM.2022.3151036 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9709801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9709801</ieee_id><sourcerecordid>2675049070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2546-3375daf0a975a05db65fd5b8c45a398865fc4f048ae9b80cef7edc5411c03a2a3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKd_QG8KXneeJE2TXI6yuUHnwI_rkKUpZnRNTbqB_no7N7w5H_A-58CD0D2GCcYgn8pivVpNCBAyoZhhoPkFGmHGREqGcjnMIGTKuRTX6CbGLQAIwvAILQq_64KN0R1s8mJ1SOfONlVSeqMb96N759uk9iFZ7Zvedbr_TF6Xb-nUVbZKZu3BBd_ubNvHW3RV6ybau3Mfo4_57L1YpOX6eVlMy9QQluUppZxVugYtOdPAqk3O6opthMmYplKIYTVZDZnQVm4EGFtzWxmWYWyAaqLpGD2e7nbBf-1t7NXW70M7vFQk5wwyCRyGFDmlTPAxBlurLridDt8KgzoaU3_G1NGYOhsboIcT5Ky1_4DkIAVg-gsT_Gcs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675049070</pqid></control><display><type>article</type><title>Compressive Near-Field Localization for Multipath RIS-Aided Environments</title><source>IEEE Xplore (Online service)</source><creator>Rinchi, Omar ; Elzanaty, Ahmed ; Alouini, Mohamed-Slim</creator><creatorcontrib>Rinchi, Omar ; Elzanaty, Ahmed ; Alouini, Mohamed-Slim</creatorcontrib><description>Reconfigurable intelligent surfaces (RISs) are considered among the key techniques to be adopted for sixth-generation cellular networks (6G) to enhance not only communications but also localization performance. In this regard, we propose a novel single-anchor localization algorithm for a state-of-the-art architecture where the position of the user equipment (UE) is to be estimated at the base station (BS) with the aid of a RIS. We consider a practical model that accounts for both near-field propagation and multipath environments. The proposed scheme relies on a compressed sensing (CS) technique tailored to address the issues associated with near-field localization and model mismatches. Also, the RIS phases are optimized to enhance the positioning performance, achieving more than one order of magnitude gain in the localization accuracy compared to RISs with non-optimized phases.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2022.3151036</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>6G mobile communication ; Algorithms ; Atomic measurements ; Cellular communication ; Channel estimation ; compressed sensing ; Covariance matrices ; Localization ; Location awareness ; Near fields ; near-field ; positioning ; Reconfigurable intelligent surface (RIS) ; Signal to noise ratio ; Sparse matrices</subject><ispartof>IEEE communications letters, 2022-06, Vol.26 (6), p.1268-1272</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2546-3375daf0a975a05db65fd5b8c45a398865fc4f048ae9b80cef7edc5411c03a2a3</citedby><cites>FETCH-LOGICAL-c2546-3375daf0a975a05db65fd5b8c45a398865fc4f048ae9b80cef7edc5411c03a2a3</cites><orcidid>0000-0001-8622-6497 ; 0000-0003-4827-1793 ; 0000-0001-8854-8369</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9709801$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Rinchi, Omar</creatorcontrib><creatorcontrib>Elzanaty, Ahmed</creatorcontrib><creatorcontrib>Alouini, Mohamed-Slim</creatorcontrib><title>Compressive Near-Field Localization for Multipath RIS-Aided Environments</title><title>IEEE communications letters</title><addtitle>LCOMM</addtitle><description>Reconfigurable intelligent surfaces (RISs) are considered among the key techniques to be adopted for sixth-generation cellular networks (6G) to enhance not only communications but also localization performance. In this regard, we propose a novel single-anchor localization algorithm for a state-of-the-art architecture where the position of the user equipment (UE) is to be estimated at the base station (BS) with the aid of a RIS. We consider a practical model that accounts for both near-field propagation and multipath environments. The proposed scheme relies on a compressed sensing (CS) technique tailored to address the issues associated with near-field localization and model mismatches. Also, the RIS phases are optimized to enhance the positioning performance, achieving more than one order of magnitude gain in the localization accuracy compared to RISs with non-optimized phases.</description><subject>6G mobile communication</subject><subject>Algorithms</subject><subject>Atomic measurements</subject><subject>Cellular communication</subject><subject>Channel estimation</subject><subject>compressed sensing</subject><subject>Covariance matrices</subject><subject>Localization</subject><subject>Location awareness</subject><subject>Near fields</subject><subject>near-field</subject><subject>positioning</subject><subject>Reconfigurable intelligent surface (RIS)</subject><subject>Signal to noise ratio</subject><subject>Sparse matrices</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOKd_QG8KXneeJE2TXI6yuUHnwI_rkKUpZnRNTbqB_no7N7w5H_A-58CD0D2GCcYgn8pivVpNCBAyoZhhoPkFGmHGREqGcjnMIGTKuRTX6CbGLQAIwvAILQq_64KN0R1s8mJ1SOfONlVSeqMb96N759uk9iFZ7Zvedbr_TF6Xb-nUVbZKZu3BBd_ubNvHW3RV6ybau3Mfo4_57L1YpOX6eVlMy9QQluUppZxVugYtOdPAqk3O6opthMmYplKIYTVZDZnQVm4EGFtzWxmWYWyAaqLpGD2e7nbBf-1t7NXW70M7vFQk5wwyCRyGFDmlTPAxBlurLridDt8KgzoaU3_G1NGYOhsboIcT5Ky1_4DkIAVg-gsT_Gcs</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Rinchi, Omar</creator><creator>Elzanaty, Ahmed</creator><creator>Alouini, Mohamed-Slim</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8622-6497</orcidid><orcidid>https://orcid.org/0000-0003-4827-1793</orcidid><orcidid>https://orcid.org/0000-0001-8854-8369</orcidid></search><sort><creationdate>20220601</creationdate><title>Compressive Near-Field Localization for Multipath RIS-Aided Environments</title><author>Rinchi, Omar ; Elzanaty, Ahmed ; Alouini, Mohamed-Slim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2546-3375daf0a975a05db65fd5b8c45a398865fc4f048ae9b80cef7edc5411c03a2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>6G mobile communication</topic><topic>Algorithms</topic><topic>Atomic measurements</topic><topic>Cellular communication</topic><topic>Channel estimation</topic><topic>compressed sensing</topic><topic>Covariance matrices</topic><topic>Localization</topic><topic>Location awareness</topic><topic>Near fields</topic><topic>near-field</topic><topic>positioning</topic><topic>Reconfigurable intelligent surface (RIS)</topic><topic>Signal to noise ratio</topic><topic>Sparse matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rinchi, Omar</creatorcontrib><creatorcontrib>Elzanaty, Ahmed</creatorcontrib><creatorcontrib>Alouini, Mohamed-Slim</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rinchi, Omar</au><au>Elzanaty, Ahmed</au><au>Alouini, Mohamed-Slim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compressive Near-Field Localization for Multipath RIS-Aided Environments</atitle><jtitle>IEEE communications letters</jtitle><stitle>LCOMM</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>26</volume><issue>6</issue><spage>1268</spage><epage>1272</epage><pages>1268-1272</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>Reconfigurable intelligent surfaces (RISs) are considered among the key techniques to be adopted for sixth-generation cellular networks (6G) to enhance not only communications but also localization performance. In this regard, we propose a novel single-anchor localization algorithm for a state-of-the-art architecture where the position of the user equipment (UE) is to be estimated at the base station (BS) with the aid of a RIS. We consider a practical model that accounts for both near-field propagation and multipath environments. The proposed scheme relies on a compressed sensing (CS) technique tailored to address the issues associated with near-field localization and model mismatches. Also, the RIS phases are optimized to enhance the positioning performance, achieving more than one order of magnitude gain in the localization accuracy compared to RISs with non-optimized phases.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2022.3151036</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-8622-6497</orcidid><orcidid>https://orcid.org/0000-0003-4827-1793</orcidid><orcidid>https://orcid.org/0000-0001-8854-8369</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-7798 |
ispartof | IEEE communications letters, 2022-06, Vol.26 (6), p.1268-1272 |
issn | 1089-7798 1558-2558 |
language | eng |
recordid | cdi_ieee_primary_9709801 |
source | IEEE Xplore (Online service) |
subjects | 6G mobile communication Algorithms Atomic measurements Cellular communication Channel estimation compressed sensing Covariance matrices Localization Location awareness Near fields near-field positioning Reconfigurable intelligent surface (RIS) Signal to noise ratio Sparse matrices |
title | Compressive Near-Field Localization for Multipath RIS-Aided Environments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A24%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compressive%20Near-Field%20Localization%20for%20Multipath%20RIS-Aided%20Environments&rft.jtitle=IEEE%20communications%20letters&rft.au=Rinchi,%20Omar&rft.date=2022-06-01&rft.volume=26&rft.issue=6&rft.spage=1268&rft.epage=1272&rft.pages=1268-1272&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2022.3151036&rft_dat=%3Cproquest_ieee_%3E2675049070%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2546-3375daf0a975a05db65fd5b8c45a398865fc4f048ae9b80cef7edc5411c03a2a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2675049070&rft_id=info:pmid/&rft_ieee_id=9709801&rfr_iscdi=true |