Loading…

Compressive Near-Field Localization for Multipath RIS-Aided Environments

Reconfigurable intelligent surfaces (RISs) are considered among the key techniques to be adopted for sixth-generation cellular networks (6G) to enhance not only communications but also localization performance. In this regard, we propose a novel single-anchor localization algorithm for a state-of-th...

Full description

Saved in:
Bibliographic Details
Published in:IEEE communications letters 2022-06, Vol.26 (6), p.1268-1272
Main Authors: Rinchi, Omar, Elzanaty, Ahmed, Alouini, Mohamed-Slim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2546-3375daf0a975a05db65fd5b8c45a398865fc4f048ae9b80cef7edc5411c03a2a3
cites cdi_FETCH-LOGICAL-c2546-3375daf0a975a05db65fd5b8c45a398865fc4f048ae9b80cef7edc5411c03a2a3
container_end_page 1272
container_issue 6
container_start_page 1268
container_title IEEE communications letters
container_volume 26
creator Rinchi, Omar
Elzanaty, Ahmed
Alouini, Mohamed-Slim
description Reconfigurable intelligent surfaces (RISs) are considered among the key techniques to be adopted for sixth-generation cellular networks (6G) to enhance not only communications but also localization performance. In this regard, we propose a novel single-anchor localization algorithm for a state-of-the-art architecture where the position of the user equipment (UE) is to be estimated at the base station (BS) with the aid of a RIS. We consider a practical model that accounts for both near-field propagation and multipath environments. The proposed scheme relies on a compressed sensing (CS) technique tailored to address the issues associated with near-field localization and model mismatches. Also, the RIS phases are optimized to enhance the positioning performance, achieving more than one order of magnitude gain in the localization accuracy compared to RISs with non-optimized phases.
doi_str_mv 10.1109/LCOMM.2022.3151036
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9709801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9709801</ieee_id><sourcerecordid>2675049070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2546-3375daf0a975a05db65fd5b8c45a398865fc4f048ae9b80cef7edc5411c03a2a3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKd_QG8KXneeJE2TXI6yuUHnwI_rkKUpZnRNTbqB_no7N7w5H_A-58CD0D2GCcYgn8pivVpNCBAyoZhhoPkFGmHGREqGcjnMIGTKuRTX6CbGLQAIwvAILQq_64KN0R1s8mJ1SOfONlVSeqMb96N759uk9iFZ7Zvedbr_TF6Xb-nUVbZKZu3BBd_ubNvHW3RV6ybau3Mfo4_57L1YpOX6eVlMy9QQluUppZxVugYtOdPAqk3O6opthMmYplKIYTVZDZnQVm4EGFtzWxmWYWyAaqLpGD2e7nbBf-1t7NXW70M7vFQk5wwyCRyGFDmlTPAxBlurLridDt8KgzoaU3_G1NGYOhsboIcT5Ky1_4DkIAVg-gsT_Gcs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675049070</pqid></control><display><type>article</type><title>Compressive Near-Field Localization for Multipath RIS-Aided Environments</title><source>IEEE Xplore (Online service)</source><creator>Rinchi, Omar ; Elzanaty, Ahmed ; Alouini, Mohamed-Slim</creator><creatorcontrib>Rinchi, Omar ; Elzanaty, Ahmed ; Alouini, Mohamed-Slim</creatorcontrib><description>Reconfigurable intelligent surfaces (RISs) are considered among the key techniques to be adopted for sixth-generation cellular networks (6G) to enhance not only communications but also localization performance. In this regard, we propose a novel single-anchor localization algorithm for a state-of-the-art architecture where the position of the user equipment (UE) is to be estimated at the base station (BS) with the aid of a RIS. We consider a practical model that accounts for both near-field propagation and multipath environments. The proposed scheme relies on a compressed sensing (CS) technique tailored to address the issues associated with near-field localization and model mismatches. Also, the RIS phases are optimized to enhance the positioning performance, achieving more than one order of magnitude gain in the localization accuracy compared to RISs with non-optimized phases.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2022.3151036</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>6G mobile communication ; Algorithms ; Atomic measurements ; Cellular communication ; Channel estimation ; compressed sensing ; Covariance matrices ; Localization ; Location awareness ; Near fields ; near-field ; positioning ; Reconfigurable intelligent surface (RIS) ; Signal to noise ratio ; Sparse matrices</subject><ispartof>IEEE communications letters, 2022-06, Vol.26 (6), p.1268-1272</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2546-3375daf0a975a05db65fd5b8c45a398865fc4f048ae9b80cef7edc5411c03a2a3</citedby><cites>FETCH-LOGICAL-c2546-3375daf0a975a05db65fd5b8c45a398865fc4f048ae9b80cef7edc5411c03a2a3</cites><orcidid>0000-0001-8622-6497 ; 0000-0003-4827-1793 ; 0000-0001-8854-8369</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9709801$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Rinchi, Omar</creatorcontrib><creatorcontrib>Elzanaty, Ahmed</creatorcontrib><creatorcontrib>Alouini, Mohamed-Slim</creatorcontrib><title>Compressive Near-Field Localization for Multipath RIS-Aided Environments</title><title>IEEE communications letters</title><addtitle>LCOMM</addtitle><description>Reconfigurable intelligent surfaces (RISs) are considered among the key techniques to be adopted for sixth-generation cellular networks (6G) to enhance not only communications but also localization performance. In this regard, we propose a novel single-anchor localization algorithm for a state-of-the-art architecture where the position of the user equipment (UE) is to be estimated at the base station (BS) with the aid of a RIS. We consider a practical model that accounts for both near-field propagation and multipath environments. The proposed scheme relies on a compressed sensing (CS) technique tailored to address the issues associated with near-field localization and model mismatches. Also, the RIS phases are optimized to enhance the positioning performance, achieving more than one order of magnitude gain in the localization accuracy compared to RISs with non-optimized phases.</description><subject>6G mobile communication</subject><subject>Algorithms</subject><subject>Atomic measurements</subject><subject>Cellular communication</subject><subject>Channel estimation</subject><subject>compressed sensing</subject><subject>Covariance matrices</subject><subject>Localization</subject><subject>Location awareness</subject><subject>Near fields</subject><subject>near-field</subject><subject>positioning</subject><subject>Reconfigurable intelligent surface (RIS)</subject><subject>Signal to noise ratio</subject><subject>Sparse matrices</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOKd_QG8KXneeJE2TXI6yuUHnwI_rkKUpZnRNTbqB_no7N7w5H_A-58CD0D2GCcYgn8pivVpNCBAyoZhhoPkFGmHGREqGcjnMIGTKuRTX6CbGLQAIwvAILQq_64KN0R1s8mJ1SOfONlVSeqMb96N759uk9iFZ7Zvedbr_TF6Xb-nUVbZKZu3BBd_ubNvHW3RV6ybau3Mfo4_57L1YpOX6eVlMy9QQluUppZxVugYtOdPAqk3O6opthMmYplKIYTVZDZnQVm4EGFtzWxmWYWyAaqLpGD2e7nbBf-1t7NXW70M7vFQk5wwyCRyGFDmlTPAxBlurLridDt8KgzoaU3_G1NGYOhsboIcT5Ky1_4DkIAVg-gsT_Gcs</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Rinchi, Omar</creator><creator>Elzanaty, Ahmed</creator><creator>Alouini, Mohamed-Slim</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8622-6497</orcidid><orcidid>https://orcid.org/0000-0003-4827-1793</orcidid><orcidid>https://orcid.org/0000-0001-8854-8369</orcidid></search><sort><creationdate>20220601</creationdate><title>Compressive Near-Field Localization for Multipath RIS-Aided Environments</title><author>Rinchi, Omar ; Elzanaty, Ahmed ; Alouini, Mohamed-Slim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2546-3375daf0a975a05db65fd5b8c45a398865fc4f048ae9b80cef7edc5411c03a2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>6G mobile communication</topic><topic>Algorithms</topic><topic>Atomic measurements</topic><topic>Cellular communication</topic><topic>Channel estimation</topic><topic>compressed sensing</topic><topic>Covariance matrices</topic><topic>Localization</topic><topic>Location awareness</topic><topic>Near fields</topic><topic>near-field</topic><topic>positioning</topic><topic>Reconfigurable intelligent surface (RIS)</topic><topic>Signal to noise ratio</topic><topic>Sparse matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rinchi, Omar</creatorcontrib><creatorcontrib>Elzanaty, Ahmed</creatorcontrib><creatorcontrib>Alouini, Mohamed-Slim</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rinchi, Omar</au><au>Elzanaty, Ahmed</au><au>Alouini, Mohamed-Slim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compressive Near-Field Localization for Multipath RIS-Aided Environments</atitle><jtitle>IEEE communications letters</jtitle><stitle>LCOMM</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>26</volume><issue>6</issue><spage>1268</spage><epage>1272</epage><pages>1268-1272</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>Reconfigurable intelligent surfaces (RISs) are considered among the key techniques to be adopted for sixth-generation cellular networks (6G) to enhance not only communications but also localization performance. In this regard, we propose a novel single-anchor localization algorithm for a state-of-the-art architecture where the position of the user equipment (UE) is to be estimated at the base station (BS) with the aid of a RIS. We consider a practical model that accounts for both near-field propagation and multipath environments. The proposed scheme relies on a compressed sensing (CS) technique tailored to address the issues associated with near-field localization and model mismatches. Also, the RIS phases are optimized to enhance the positioning performance, achieving more than one order of magnitude gain in the localization accuracy compared to RISs with non-optimized phases.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2022.3151036</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-8622-6497</orcidid><orcidid>https://orcid.org/0000-0003-4827-1793</orcidid><orcidid>https://orcid.org/0000-0001-8854-8369</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1089-7798
ispartof IEEE communications letters, 2022-06, Vol.26 (6), p.1268-1272
issn 1089-7798
1558-2558
language eng
recordid cdi_ieee_primary_9709801
source IEEE Xplore (Online service)
subjects 6G mobile communication
Algorithms
Atomic measurements
Cellular communication
Channel estimation
compressed sensing
Covariance matrices
Localization
Location awareness
Near fields
near-field
positioning
Reconfigurable intelligent surface (RIS)
Signal to noise ratio
Sparse matrices
title Compressive Near-Field Localization for Multipath RIS-Aided Environments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A24%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compressive%20Near-Field%20Localization%20for%20Multipath%20RIS-Aided%20Environments&rft.jtitle=IEEE%20communications%20letters&rft.au=Rinchi,%20Omar&rft.date=2022-06-01&rft.volume=26&rft.issue=6&rft.spage=1268&rft.epage=1272&rft.pages=1268-1272&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2022.3151036&rft_dat=%3Cproquest_ieee_%3E2675049070%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2546-3375daf0a975a05db65fd5b8c45a398865fc4f048ae9b80cef7edc5411c03a2a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2675049070&rft_id=info:pmid/&rft_ieee_id=9709801&rfr_iscdi=true