Loading…
WaveFill: A Wavelet-based Generation Network for Image Inpainting
Image inpainting aims to complete the missing or corrupted regions of images with realistic contents. The prevalent approaches adopt a hybrid objective of reconstruction and perceptual quality by using generative adversarial networks. However, the reconstruction loss and adversarial loss focus on sy...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 14103 |
container_issue | |
container_start_page | 14094 |
container_title | |
container_volume | |
creator | Yu, Yingchen Zhan, Fangneng Lu, Shijian Pan, Jianxiong Ma, Feiying Xie, Xuansong Miao, Chunyan |
description | Image inpainting aims to complete the missing or corrupted regions of images with realistic contents. The prevalent approaches adopt a hybrid objective of reconstruction and perceptual quality by using generative adversarial networks. However, the reconstruction loss and adversarial loss focus on synthesizing contents of different frequencies and simply applying them together often leads to inter-frequency conflicts and compromised inpainting. This paper presents WaveFill, a wavelet-based inpainting network that decomposes images into multiple frequency bands and fills the missing regions in each frequency band separately and explicitly. WaveFill decomposes images by using discrete wavelet transform (DWT) that preserves spatial information naturally. It applies L1 reconstruction loss to the decomposed low-frequency bands and adversarial loss to high-frequency bands, hence effectively mitigate inter-frequency conflicts while completing images in spatial domain. To address the inpainting inconsistency in different frequency bands and fuse features with distinct statistics, we design a novel normalization scheme that aligns and fuses the multi-frequency features effectively. Extensive experiments over multiple datasets show that WaveFill achieves superior image inpainting qualitatively and quantitatively. |
doi_str_mv | 10.1109/ICCV48922.2021.01385 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9710199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9710199</ieee_id><sourcerecordid>9710199</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-ba2d924f268526ff1d3a73da97611f58ef642f9ba1664d4c1c935a406d2a23253</originalsourceid><addsrcrecordid>eNotjstOwzAQAA0SEqX0C-DgH0jxrh-xuUURLZEquPA4VttmXRnSpEoiEH9PKzjNnEYjxC2oOYAKd1VZvhkfEOeoEOYKtLdnYhZyD85Zgx7QnosJaq-y3CpzKa6G4UMpHdC7iSje6YsXqWnuZSFP3vCYbWjgWi655Z7G1LXyicfvrv-Usetltacdy6o9UGrH1O6uxUWkZuDZP6fidfHwUj5mq-dlVRarLKHSpybWAU1E5y26GKHWlOuaQu4AovUcncEYNnTcNrXZwjZoS0a5Ggk1Wj0VN3_dxMzrQ5_21P-sQw4KQtC_QvRJVQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>WaveFill: A Wavelet-based Generation Network for Image Inpainting</title><source>IEEE Xplore All Conference Series</source><creator>Yu, Yingchen ; Zhan, Fangneng ; Lu, Shijian ; Pan, Jianxiong ; Ma, Feiying ; Xie, Xuansong ; Miao, Chunyan</creator><creatorcontrib>Yu, Yingchen ; Zhan, Fangneng ; Lu, Shijian ; Pan, Jianxiong ; Ma, Feiying ; Xie, Xuansong ; Miao, Chunyan</creatorcontrib><description>Image inpainting aims to complete the missing or corrupted regions of images with realistic contents. The prevalent approaches adopt a hybrid objective of reconstruction and perceptual quality by using generative adversarial networks. However, the reconstruction loss and adversarial loss focus on synthesizing contents of different frequencies and simply applying them together often leads to inter-frequency conflicts and compromised inpainting. This paper presents WaveFill, a wavelet-based inpainting network that decomposes images into multiple frequency bands and fills the missing regions in each frequency band separately and explicitly. WaveFill decomposes images by using discrete wavelet transform (DWT) that preserves spatial information naturally. It applies L1 reconstruction loss to the decomposed low-frequency bands and adversarial loss to high-frequency bands, hence effectively mitigate inter-frequency conflicts while completing images in spatial domain. To address the inpainting inconsistency in different frequency bands and fuse features with distinct statistics, we design a novel normalization scheme that aligns and fuses the multi-frequency features effectively. Extensive experiments over multiple datasets show that WaveFill achieves superior image inpainting qualitatively and quantitatively.</description><identifier>EISSN: 2380-7504</identifier><identifier>EISBN: 9781665428125</identifier><identifier>EISBN: 1665428120</identifier><identifier>DOI: 10.1109/ICCV48922.2021.01385</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer vision ; Discrete wavelet transforms ; Frequency synthesizers ; Fuses ; Generative adversarial networks ; Hybrid power systems ; Image and video synthesis ; Neural generative models ; Wavelet domain</subject><ispartof>2021 IEEE/CVF International Conference on Computer Vision (ICCV), 2021, p.14094-14103</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9710199$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9710199$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yu, Yingchen</creatorcontrib><creatorcontrib>Zhan, Fangneng</creatorcontrib><creatorcontrib>Lu, Shijian</creatorcontrib><creatorcontrib>Pan, Jianxiong</creatorcontrib><creatorcontrib>Ma, Feiying</creatorcontrib><creatorcontrib>Xie, Xuansong</creatorcontrib><creatorcontrib>Miao, Chunyan</creatorcontrib><title>WaveFill: A Wavelet-based Generation Network for Image Inpainting</title><title>2021 IEEE/CVF International Conference on Computer Vision (ICCV)</title><addtitle>ICCV</addtitle><description>Image inpainting aims to complete the missing or corrupted regions of images with realistic contents. The prevalent approaches adopt a hybrid objective of reconstruction and perceptual quality by using generative adversarial networks. However, the reconstruction loss and adversarial loss focus on synthesizing contents of different frequencies and simply applying them together often leads to inter-frequency conflicts and compromised inpainting. This paper presents WaveFill, a wavelet-based inpainting network that decomposes images into multiple frequency bands and fills the missing regions in each frequency band separately and explicitly. WaveFill decomposes images by using discrete wavelet transform (DWT) that preserves spatial information naturally. It applies L1 reconstruction loss to the decomposed low-frequency bands and adversarial loss to high-frequency bands, hence effectively mitigate inter-frequency conflicts while completing images in spatial domain. To address the inpainting inconsistency in different frequency bands and fuse features with distinct statistics, we design a novel normalization scheme that aligns and fuses the multi-frequency features effectively. Extensive experiments over multiple datasets show that WaveFill achieves superior image inpainting qualitatively and quantitatively.</description><subject>Computer vision</subject><subject>Discrete wavelet transforms</subject><subject>Frequency synthesizers</subject><subject>Fuses</subject><subject>Generative adversarial networks</subject><subject>Hybrid power systems</subject><subject>Image and video synthesis</subject><subject>Neural generative models</subject><subject>Wavelet domain</subject><issn>2380-7504</issn><isbn>9781665428125</isbn><isbn>1665428120</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjstOwzAQAA0SEqX0C-DgH0jxrh-xuUURLZEquPA4VttmXRnSpEoiEH9PKzjNnEYjxC2oOYAKd1VZvhkfEOeoEOYKtLdnYhZyD85Zgx7QnosJaq-y3CpzKa6G4UMpHdC7iSje6YsXqWnuZSFP3vCYbWjgWi655Z7G1LXyicfvrv-Usetltacdy6o9UGrH1O6uxUWkZuDZP6fidfHwUj5mq-dlVRarLKHSpybWAU1E5y26GKHWlOuaQu4AovUcncEYNnTcNrXZwjZoS0a5Ggk1Wj0VN3_dxMzrQ5_21P-sQw4KQtC_QvRJVQ</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Yu, Yingchen</creator><creator>Zhan, Fangneng</creator><creator>Lu, Shijian</creator><creator>Pan, Jianxiong</creator><creator>Ma, Feiying</creator><creator>Xie, Xuansong</creator><creator>Miao, Chunyan</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>202110</creationdate><title>WaveFill: A Wavelet-based Generation Network for Image Inpainting</title><author>Yu, Yingchen ; Zhan, Fangneng ; Lu, Shijian ; Pan, Jianxiong ; Ma, Feiying ; Xie, Xuansong ; Miao, Chunyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-ba2d924f268526ff1d3a73da97611f58ef642f9ba1664d4c1c935a406d2a23253</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computer vision</topic><topic>Discrete wavelet transforms</topic><topic>Frequency synthesizers</topic><topic>Fuses</topic><topic>Generative adversarial networks</topic><topic>Hybrid power systems</topic><topic>Image and video synthesis</topic><topic>Neural generative models</topic><topic>Wavelet domain</topic><toplevel>online_resources</toplevel><creatorcontrib>Yu, Yingchen</creatorcontrib><creatorcontrib>Zhan, Fangneng</creatorcontrib><creatorcontrib>Lu, Shijian</creatorcontrib><creatorcontrib>Pan, Jianxiong</creatorcontrib><creatorcontrib>Ma, Feiying</creatorcontrib><creatorcontrib>Xie, Xuansong</creatorcontrib><creatorcontrib>Miao, Chunyan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yu, Yingchen</au><au>Zhan, Fangneng</au><au>Lu, Shijian</au><au>Pan, Jianxiong</au><au>Ma, Feiying</au><au>Xie, Xuansong</au><au>Miao, Chunyan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>WaveFill: A Wavelet-based Generation Network for Image Inpainting</atitle><btitle>2021 IEEE/CVF International Conference on Computer Vision (ICCV)</btitle><stitle>ICCV</stitle><date>2021-10</date><risdate>2021</risdate><spage>14094</spage><epage>14103</epage><pages>14094-14103</pages><eissn>2380-7504</eissn><eisbn>9781665428125</eisbn><eisbn>1665428120</eisbn><coden>IEEPAD</coden><abstract>Image inpainting aims to complete the missing or corrupted regions of images with realistic contents. The prevalent approaches adopt a hybrid objective of reconstruction and perceptual quality by using generative adversarial networks. However, the reconstruction loss and adversarial loss focus on synthesizing contents of different frequencies and simply applying them together often leads to inter-frequency conflicts and compromised inpainting. This paper presents WaveFill, a wavelet-based inpainting network that decomposes images into multiple frequency bands and fills the missing regions in each frequency band separately and explicitly. WaveFill decomposes images by using discrete wavelet transform (DWT) that preserves spatial information naturally. It applies L1 reconstruction loss to the decomposed low-frequency bands and adversarial loss to high-frequency bands, hence effectively mitigate inter-frequency conflicts while completing images in spatial domain. To address the inpainting inconsistency in different frequency bands and fuse features with distinct statistics, we design a novel normalization scheme that aligns and fuses the multi-frequency features effectively. Extensive experiments over multiple datasets show that WaveFill achieves superior image inpainting qualitatively and quantitatively.</abstract><pub>IEEE</pub><doi>10.1109/ICCV48922.2021.01385</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2380-7504 |
ispartof | 2021 IEEE/CVF International Conference on Computer Vision (ICCV), 2021, p.14094-14103 |
issn | 2380-7504 |
language | eng |
recordid | cdi_ieee_primary_9710199 |
source | IEEE Xplore All Conference Series |
subjects | Computer vision Discrete wavelet transforms Frequency synthesizers Fuses Generative adversarial networks Hybrid power systems Image and video synthesis Neural generative models Wavelet domain |
title | WaveFill: A Wavelet-based Generation Network for Image Inpainting |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A24%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=WaveFill:%20A%20Wavelet-based%20Generation%20Network%20for%20Image%20Inpainting&rft.btitle=2021%20IEEE/CVF%20International%20Conference%20on%20Computer%20Vision%20(ICCV)&rft.au=Yu,%20Yingchen&rft.date=2021-10&rft.spage=14094&rft.epage=14103&rft.pages=14094-14103&rft.eissn=2380-7504&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICCV48922.2021.01385&rft.eisbn=9781665428125&rft.eisbn_list=1665428120&rft_dat=%3Cieee_CHZPO%3E9710199%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-ba2d924f268526ff1d3a73da97611f58ef642f9ba1664d4c1c935a406d2a23253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9710199&rfr_iscdi=true |