Loading…

WaveFill: A Wavelet-based Generation Network for Image Inpainting

Image inpainting aims to complete the missing or corrupted regions of images with realistic contents. The prevalent approaches adopt a hybrid objective of reconstruction and perceptual quality by using generative adversarial networks. However, the reconstruction loss and adversarial loss focus on sy...

Full description

Saved in:
Bibliographic Details
Main Authors: Yu, Yingchen, Zhan, Fangneng, Lu, Shijian, Pan, Jianxiong, Ma, Feiying, Xie, Xuansong, Miao, Chunyan
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 14103
container_issue
container_start_page 14094
container_title
container_volume
creator Yu, Yingchen
Zhan, Fangneng
Lu, Shijian
Pan, Jianxiong
Ma, Feiying
Xie, Xuansong
Miao, Chunyan
description Image inpainting aims to complete the missing or corrupted regions of images with realistic contents. The prevalent approaches adopt a hybrid objective of reconstruction and perceptual quality by using generative adversarial networks. However, the reconstruction loss and adversarial loss focus on synthesizing contents of different frequencies and simply applying them together often leads to inter-frequency conflicts and compromised inpainting. This paper presents WaveFill, a wavelet-based inpainting network that decomposes images into multiple frequency bands and fills the missing regions in each frequency band separately and explicitly. WaveFill decomposes images by using discrete wavelet transform (DWT) that preserves spatial information naturally. It applies L1 reconstruction loss to the decomposed low-frequency bands and adversarial loss to high-frequency bands, hence effectively mitigate inter-frequency conflicts while completing images in spatial domain. To address the inpainting inconsistency in different frequency bands and fuse features with distinct statistics, we design a novel normalization scheme that aligns and fuses the multi-frequency features effectively. Extensive experiments over multiple datasets show that WaveFill achieves superior image inpainting qualitatively and quantitatively.
doi_str_mv 10.1109/ICCV48922.2021.01385
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9710199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9710199</ieee_id><sourcerecordid>9710199</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-ba2d924f268526ff1d3a73da97611f58ef642f9ba1664d4c1c935a406d2a23253</originalsourceid><addsrcrecordid>eNotjstOwzAQAA0SEqX0C-DgH0jxrh-xuUURLZEquPA4VttmXRnSpEoiEH9PKzjNnEYjxC2oOYAKd1VZvhkfEOeoEOYKtLdnYhZyD85Zgx7QnosJaq-y3CpzKa6G4UMpHdC7iSje6YsXqWnuZSFP3vCYbWjgWi655Z7G1LXyicfvrv-Usetltacdy6o9UGrH1O6uxUWkZuDZP6fidfHwUj5mq-dlVRarLKHSpybWAU1E5y26GKHWlOuaQu4AovUcncEYNnTcNrXZwjZoS0a5Ggk1Wj0VN3_dxMzrQ5_21P-sQw4KQtC_QvRJVQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>WaveFill: A Wavelet-based Generation Network for Image Inpainting</title><source>IEEE Xplore All Conference Series</source><creator>Yu, Yingchen ; Zhan, Fangneng ; Lu, Shijian ; Pan, Jianxiong ; Ma, Feiying ; Xie, Xuansong ; Miao, Chunyan</creator><creatorcontrib>Yu, Yingchen ; Zhan, Fangneng ; Lu, Shijian ; Pan, Jianxiong ; Ma, Feiying ; Xie, Xuansong ; Miao, Chunyan</creatorcontrib><description>Image inpainting aims to complete the missing or corrupted regions of images with realistic contents. The prevalent approaches adopt a hybrid objective of reconstruction and perceptual quality by using generative adversarial networks. However, the reconstruction loss and adversarial loss focus on synthesizing contents of different frequencies and simply applying them together often leads to inter-frequency conflicts and compromised inpainting. This paper presents WaveFill, a wavelet-based inpainting network that decomposes images into multiple frequency bands and fills the missing regions in each frequency band separately and explicitly. WaveFill decomposes images by using discrete wavelet transform (DWT) that preserves spatial information naturally. It applies L1 reconstruction loss to the decomposed low-frequency bands and adversarial loss to high-frequency bands, hence effectively mitigate inter-frequency conflicts while completing images in spatial domain. To address the inpainting inconsistency in different frequency bands and fuse features with distinct statistics, we design a novel normalization scheme that aligns and fuses the multi-frequency features effectively. Extensive experiments over multiple datasets show that WaveFill achieves superior image inpainting qualitatively and quantitatively.</description><identifier>EISSN: 2380-7504</identifier><identifier>EISBN: 9781665428125</identifier><identifier>EISBN: 1665428120</identifier><identifier>DOI: 10.1109/ICCV48922.2021.01385</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer vision ; Discrete wavelet transforms ; Frequency synthesizers ; Fuses ; Generative adversarial networks ; Hybrid power systems ; Image and video synthesis ; Neural generative models ; Wavelet domain</subject><ispartof>2021 IEEE/CVF International Conference on Computer Vision (ICCV), 2021, p.14094-14103</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9710199$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9710199$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yu, Yingchen</creatorcontrib><creatorcontrib>Zhan, Fangneng</creatorcontrib><creatorcontrib>Lu, Shijian</creatorcontrib><creatorcontrib>Pan, Jianxiong</creatorcontrib><creatorcontrib>Ma, Feiying</creatorcontrib><creatorcontrib>Xie, Xuansong</creatorcontrib><creatorcontrib>Miao, Chunyan</creatorcontrib><title>WaveFill: A Wavelet-based Generation Network for Image Inpainting</title><title>2021 IEEE/CVF International Conference on Computer Vision (ICCV)</title><addtitle>ICCV</addtitle><description>Image inpainting aims to complete the missing or corrupted regions of images with realistic contents. The prevalent approaches adopt a hybrid objective of reconstruction and perceptual quality by using generative adversarial networks. However, the reconstruction loss and adversarial loss focus on synthesizing contents of different frequencies and simply applying them together often leads to inter-frequency conflicts and compromised inpainting. This paper presents WaveFill, a wavelet-based inpainting network that decomposes images into multiple frequency bands and fills the missing regions in each frequency band separately and explicitly. WaveFill decomposes images by using discrete wavelet transform (DWT) that preserves spatial information naturally. It applies L1 reconstruction loss to the decomposed low-frequency bands and adversarial loss to high-frequency bands, hence effectively mitigate inter-frequency conflicts while completing images in spatial domain. To address the inpainting inconsistency in different frequency bands and fuse features with distinct statistics, we design a novel normalization scheme that aligns and fuses the multi-frequency features effectively. Extensive experiments over multiple datasets show that WaveFill achieves superior image inpainting qualitatively and quantitatively.</description><subject>Computer vision</subject><subject>Discrete wavelet transforms</subject><subject>Frequency synthesizers</subject><subject>Fuses</subject><subject>Generative adversarial networks</subject><subject>Hybrid power systems</subject><subject>Image and video synthesis</subject><subject>Neural generative models</subject><subject>Wavelet domain</subject><issn>2380-7504</issn><isbn>9781665428125</isbn><isbn>1665428120</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjstOwzAQAA0SEqX0C-DgH0jxrh-xuUURLZEquPA4VttmXRnSpEoiEH9PKzjNnEYjxC2oOYAKd1VZvhkfEOeoEOYKtLdnYhZyD85Zgx7QnosJaq-y3CpzKa6G4UMpHdC7iSje6YsXqWnuZSFP3vCYbWjgWi655Z7G1LXyicfvrv-Usetltacdy6o9UGrH1O6uxUWkZuDZP6fidfHwUj5mq-dlVRarLKHSpybWAU1E5y26GKHWlOuaQu4AovUcncEYNnTcNrXZwjZoS0a5Ggk1Wj0VN3_dxMzrQ5_21P-sQw4KQtC_QvRJVQ</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Yu, Yingchen</creator><creator>Zhan, Fangneng</creator><creator>Lu, Shijian</creator><creator>Pan, Jianxiong</creator><creator>Ma, Feiying</creator><creator>Xie, Xuansong</creator><creator>Miao, Chunyan</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>202110</creationdate><title>WaveFill: A Wavelet-based Generation Network for Image Inpainting</title><author>Yu, Yingchen ; Zhan, Fangneng ; Lu, Shijian ; Pan, Jianxiong ; Ma, Feiying ; Xie, Xuansong ; Miao, Chunyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-ba2d924f268526ff1d3a73da97611f58ef642f9ba1664d4c1c935a406d2a23253</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computer vision</topic><topic>Discrete wavelet transforms</topic><topic>Frequency synthesizers</topic><topic>Fuses</topic><topic>Generative adversarial networks</topic><topic>Hybrid power systems</topic><topic>Image and video synthesis</topic><topic>Neural generative models</topic><topic>Wavelet domain</topic><toplevel>online_resources</toplevel><creatorcontrib>Yu, Yingchen</creatorcontrib><creatorcontrib>Zhan, Fangneng</creatorcontrib><creatorcontrib>Lu, Shijian</creatorcontrib><creatorcontrib>Pan, Jianxiong</creatorcontrib><creatorcontrib>Ma, Feiying</creatorcontrib><creatorcontrib>Xie, Xuansong</creatorcontrib><creatorcontrib>Miao, Chunyan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yu, Yingchen</au><au>Zhan, Fangneng</au><au>Lu, Shijian</au><au>Pan, Jianxiong</au><au>Ma, Feiying</au><au>Xie, Xuansong</au><au>Miao, Chunyan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>WaveFill: A Wavelet-based Generation Network for Image Inpainting</atitle><btitle>2021 IEEE/CVF International Conference on Computer Vision (ICCV)</btitle><stitle>ICCV</stitle><date>2021-10</date><risdate>2021</risdate><spage>14094</spage><epage>14103</epage><pages>14094-14103</pages><eissn>2380-7504</eissn><eisbn>9781665428125</eisbn><eisbn>1665428120</eisbn><coden>IEEPAD</coden><abstract>Image inpainting aims to complete the missing or corrupted regions of images with realistic contents. The prevalent approaches adopt a hybrid objective of reconstruction and perceptual quality by using generative adversarial networks. However, the reconstruction loss and adversarial loss focus on synthesizing contents of different frequencies and simply applying them together often leads to inter-frequency conflicts and compromised inpainting. This paper presents WaveFill, a wavelet-based inpainting network that decomposes images into multiple frequency bands and fills the missing regions in each frequency band separately and explicitly. WaveFill decomposes images by using discrete wavelet transform (DWT) that preserves spatial information naturally. It applies L1 reconstruction loss to the decomposed low-frequency bands and adversarial loss to high-frequency bands, hence effectively mitigate inter-frequency conflicts while completing images in spatial domain. To address the inpainting inconsistency in different frequency bands and fuse features with distinct statistics, we design a novel normalization scheme that aligns and fuses the multi-frequency features effectively. Extensive experiments over multiple datasets show that WaveFill achieves superior image inpainting qualitatively and quantitatively.</abstract><pub>IEEE</pub><doi>10.1109/ICCV48922.2021.01385</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2380-7504
ispartof 2021 IEEE/CVF International Conference on Computer Vision (ICCV), 2021, p.14094-14103
issn 2380-7504
language eng
recordid cdi_ieee_primary_9710199
source IEEE Xplore All Conference Series
subjects Computer vision
Discrete wavelet transforms
Frequency synthesizers
Fuses
Generative adversarial networks
Hybrid power systems
Image and video synthesis
Neural generative models
Wavelet domain
title WaveFill: A Wavelet-based Generation Network for Image Inpainting
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A24%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=WaveFill:%20A%20Wavelet-based%20Generation%20Network%20for%20Image%20Inpainting&rft.btitle=2021%20IEEE/CVF%20International%20Conference%20on%20Computer%20Vision%20(ICCV)&rft.au=Yu,%20Yingchen&rft.date=2021-10&rft.spage=14094&rft.epage=14103&rft.pages=14094-14103&rft.eissn=2380-7504&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICCV48922.2021.01385&rft.eisbn=9781665428125&rft.eisbn_list=1665428120&rft_dat=%3Cieee_CHZPO%3E9710199%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-ba2d924f268526ff1d3a73da97611f58ef642f9ba1664d4c1c935a406d2a23253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9710199&rfr_iscdi=true