Loading…

DRÆM - A discriminatively trained reconstruction embedding for surface anomaly detection

Visual surface anomaly detection aims to detect local image regions that significantly deviate from normal appearance. Recent surface anomaly detection methods rely on generative models to accurately reconstruct the normal areas and to fail on anomalies. These methods are trained only on anomaly-fre...

Full description

Saved in:
Bibliographic Details
Main Authors: Zavrtanik, Vitjan, Kristan, Matej, Skocaj, Danijel
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c320t-eef6d8e0514db03041f2e927c80b0e618da57c2454ee11d87be3994f8efd66603
cites
container_end_page 8319
container_issue
container_start_page 8310
container_title
container_volume
creator Zavrtanik, Vitjan
Kristan, Matej
Skocaj, Danijel
description Visual surface anomaly detection aims to detect local image regions that significantly deviate from normal appearance. Recent surface anomaly detection methods rely on generative models to accurately reconstruct the normal areas and to fail on anomalies. These methods are trained only on anomaly-free images, and often require hand-crafted post-processing steps to localize the anomalies, which prohibits optimizing the feature extraction for maximal detection capability. In addition to reconstructive approach, we cast surface anomaly detection primarily as a discriminative problem and propose a discriminatively trained reconstruction anomaly embedding model (DRÆM). The proposed method learns a joint representation of an anomalous image and its anomaly-free reconstruction, while simultaneously learning a decision boundary between normal and anomalous examples. The method enables direct anomaly localization without the need for additional complicated post-processing of the network output and can be trained using simple and general anomaly simulations. On the challenging MVTec anomaly detection dataset, DRÆM outperforms the current state-of-the-art unsupervised methods by a large margin and even de-livers detection performance close to the fully-supervised methods on the widely used DAGM surface-defect detection dataset, while substantially outperforming them in localization accuracy. Code at github.com/VitjanZ/DRAEM.
doi_str_mv 10.1109/ICCV48922.2021.00822
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9710329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9710329</ieee_id><sourcerecordid>9710329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-eef6d8e0514db03041f2e927c80b0e618da57c2454ee11d87be3994f8efd66603</originalsourceid><addsrcrecordid>eNotj8FKAzEURaMgWGu_QBf5gRlfXjKZZFlGrYWKICq4KpnkRSLtjGSmQn_AH_PHLOrqbs45cBm7FFAKAfZq2TQvyljEEgFFCWAQj9jM1kZoXSk0AqtjNkFpoKgrUKfsbBjeAaRFoyfs9frx--ueF3zOQxp8TtvUuTF90mbPx-xSR4Fn8n03jHnnx9R3nLYthZC6Nx77zIddjs4Td12_dQcp0Ei_3Dk7iW4z0Ox_p-z59uapuStWD4tlM18VXiKMBVHUwRBUQoUWJCgRkSzW3kALpIUJrqo9qkoRCRFM3ZK0VkVDMWitQU7ZxV83EdH64_DA5f3a1gIkWvkDAAJUIw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>DRÆM - A discriminatively trained reconstruction embedding for surface anomaly detection</title><source>IEEE Xplore All Conference Series</source><creator>Zavrtanik, Vitjan ; Kristan, Matej ; Skocaj, Danijel</creator><creatorcontrib>Zavrtanik, Vitjan ; Kristan, Matej ; Skocaj, Danijel</creatorcontrib><description>Visual surface anomaly detection aims to detect local image regions that significantly deviate from normal appearance. Recent surface anomaly detection methods rely on generative models to accurately reconstruct the normal areas and to fail on anomalies. These methods are trained only on anomaly-free images, and often require hand-crafted post-processing steps to localize the anomalies, which prohibits optimizing the feature extraction for maximal detection capability. In addition to reconstructive approach, we cast surface anomaly detection primarily as a discriminative problem and propose a discriminatively trained reconstruction anomaly embedding model (DRÆM). The proposed method learns a joint representation of an anomalous image and its anomaly-free reconstruction, while simultaneously learning a decision boundary between normal and anomalous examples. The method enables direct anomaly localization without the need for additional complicated post-processing of the network output and can be trained using simple and general anomaly simulations. On the challenging MVTec anomaly detection dataset, DRÆM outperforms the current state-of-the-art unsupervised methods by a large margin and even de-livers detection performance close to the fully-supervised methods on the widely used DAGM surface-defect detection dataset, while substantially outperforming them in localization accuracy. Code at github.com/VitjanZ/DRAEM.</description><identifier>EISSN: 2380-7504</identifier><identifier>EISBN: 9781665428125</identifier><identifier>EISBN: 1665428120</identifier><identifier>DOI: 10.1109/ICCV48922.2021.00822</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Computer vision ; Feature extraction ; Image reconstruction ; Location awareness ; Recognition and classification ; Surface reconstruction ; Task analysis ; Transfer/Low-shot/Semi/Unsupervised Learning ; Vision applications and systems</subject><ispartof>2021 IEEE/CVF International Conference on Computer Vision (ICCV), 2021, p.8310-8319</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-eef6d8e0514db03041f2e927c80b0e618da57c2454ee11d87be3994f8efd66603</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9710329$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9710329$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zavrtanik, Vitjan</creatorcontrib><creatorcontrib>Kristan, Matej</creatorcontrib><creatorcontrib>Skocaj, Danijel</creatorcontrib><title>DRÆM - A discriminatively trained reconstruction embedding for surface anomaly detection</title><title>2021 IEEE/CVF International Conference on Computer Vision (ICCV)</title><addtitle>ICCV</addtitle><description>Visual surface anomaly detection aims to detect local image regions that significantly deviate from normal appearance. Recent surface anomaly detection methods rely on generative models to accurately reconstruct the normal areas and to fail on anomalies. These methods are trained only on anomaly-free images, and often require hand-crafted post-processing steps to localize the anomalies, which prohibits optimizing the feature extraction for maximal detection capability. In addition to reconstructive approach, we cast surface anomaly detection primarily as a discriminative problem and propose a discriminatively trained reconstruction anomaly embedding model (DRÆM). The proposed method learns a joint representation of an anomalous image and its anomaly-free reconstruction, while simultaneously learning a decision boundary between normal and anomalous examples. The method enables direct anomaly localization without the need for additional complicated post-processing of the network output and can be trained using simple and general anomaly simulations. On the challenging MVTec anomaly detection dataset, DRÆM outperforms the current state-of-the-art unsupervised methods by a large margin and even de-livers detection performance close to the fully-supervised methods on the widely used DAGM surface-defect detection dataset, while substantially outperforming them in localization accuracy. Code at github.com/VitjanZ/DRAEM.</description><subject>Computational modeling</subject><subject>Computer vision</subject><subject>Feature extraction</subject><subject>Image reconstruction</subject><subject>Location awareness</subject><subject>Recognition and classification</subject><subject>Surface reconstruction</subject><subject>Task analysis</subject><subject>Transfer/Low-shot/Semi/Unsupervised Learning</subject><subject>Vision applications and systems</subject><issn>2380-7504</issn><isbn>9781665428125</isbn><isbn>1665428120</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8FKAzEURaMgWGu_QBf5gRlfXjKZZFlGrYWKICq4KpnkRSLtjGSmQn_AH_PHLOrqbs45cBm7FFAKAfZq2TQvyljEEgFFCWAQj9jM1kZoXSk0AqtjNkFpoKgrUKfsbBjeAaRFoyfs9frx--ueF3zOQxp8TtvUuTF90mbPx-xSR4Fn8n03jHnnx9R3nLYthZC6Nx77zIddjs4Td12_dQcp0Ei_3Dk7iW4z0Ox_p-z59uapuStWD4tlM18VXiKMBVHUwRBUQoUWJCgRkSzW3kALpIUJrqo9qkoRCRFM3ZK0VkVDMWitQU7ZxV83EdH64_DA5f3a1gIkWvkDAAJUIw</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Zavrtanik, Vitjan</creator><creator>Kristan, Matej</creator><creator>Skocaj, Danijel</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20210101</creationdate><title>DRÆM - A discriminatively trained reconstruction embedding for surface anomaly detection</title><author>Zavrtanik, Vitjan ; Kristan, Matej ; Skocaj, Danijel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-eef6d8e0514db03041f2e927c80b0e618da57c2454ee11d87be3994f8efd66603</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational modeling</topic><topic>Computer vision</topic><topic>Feature extraction</topic><topic>Image reconstruction</topic><topic>Location awareness</topic><topic>Recognition and classification</topic><topic>Surface reconstruction</topic><topic>Task analysis</topic><topic>Transfer/Low-shot/Semi/Unsupervised Learning</topic><topic>Vision applications and systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Zavrtanik, Vitjan</creatorcontrib><creatorcontrib>Kristan, Matej</creatorcontrib><creatorcontrib>Skocaj, Danijel</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zavrtanik, Vitjan</au><au>Kristan, Matej</au><au>Skocaj, Danijel</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>DRÆM - A discriminatively trained reconstruction embedding for surface anomaly detection</atitle><btitle>2021 IEEE/CVF International Conference on Computer Vision (ICCV)</btitle><stitle>ICCV</stitle><date>2021-01-01</date><risdate>2021</risdate><spage>8310</spage><epage>8319</epage><pages>8310-8319</pages><eissn>2380-7504</eissn><eisbn>9781665428125</eisbn><eisbn>1665428120</eisbn><coden>IEEPAD</coden><abstract>Visual surface anomaly detection aims to detect local image regions that significantly deviate from normal appearance. Recent surface anomaly detection methods rely on generative models to accurately reconstruct the normal areas and to fail on anomalies. These methods are trained only on anomaly-free images, and often require hand-crafted post-processing steps to localize the anomalies, which prohibits optimizing the feature extraction for maximal detection capability. In addition to reconstructive approach, we cast surface anomaly detection primarily as a discriminative problem and propose a discriminatively trained reconstruction anomaly embedding model (DRÆM). The proposed method learns a joint representation of an anomalous image and its anomaly-free reconstruction, while simultaneously learning a decision boundary between normal and anomalous examples. The method enables direct anomaly localization without the need for additional complicated post-processing of the network output and can be trained using simple and general anomaly simulations. On the challenging MVTec anomaly detection dataset, DRÆM outperforms the current state-of-the-art unsupervised methods by a large margin and even de-livers detection performance close to the fully-supervised methods on the widely used DAGM surface-defect detection dataset, while substantially outperforming them in localization accuracy. Code at github.com/VitjanZ/DRAEM.</abstract><pub>IEEE</pub><doi>10.1109/ICCV48922.2021.00822</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2380-7504
ispartof 2021 IEEE/CVF International Conference on Computer Vision (ICCV), 2021, p.8310-8319
issn 2380-7504
language eng
recordid cdi_ieee_primary_9710329
source IEEE Xplore All Conference Series
subjects Computational modeling
Computer vision
Feature extraction
Image reconstruction
Location awareness
Recognition and classification
Surface reconstruction
Task analysis
Transfer/Low-shot/Semi/Unsupervised Learning
Vision applications and systems
title DRÆM - A discriminatively trained reconstruction embedding for surface anomaly detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T09%3A47%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=DR%C3%86M%20-%20A%20discriminatively%20trained%20reconstruction%20embedding%20for%20surface%20anomaly%20detection&rft.btitle=2021%20IEEE/CVF%20International%20Conference%20on%20Computer%20Vision%20(ICCV)&rft.au=Zavrtanik,%20Vitjan&rft.date=2021-01-01&rft.spage=8310&rft.epage=8319&rft.pages=8310-8319&rft.eissn=2380-7504&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICCV48922.2021.00822&rft.eisbn=9781665428125&rft.eisbn_list=1665428120&rft_dat=%3Cieee_CHZPO%3E9710329%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c320t-eef6d8e0514db03041f2e927c80b0e618da57c2454ee11d87be3994f8efd66603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9710329&rfr_iscdi=true