Loading…

Shallow Bayesian Meta Learning for Real-World Few-Shot Recognition

Many state-of-the-art few-shot learners focus on developing effective training procedures for feature representations, before using simple (e.g., nearest centroid) classifiers. We take an approach that is agnostic to the features used, and focus exclusively on meta-learning the final classifier laye...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhang, Xueting, Meng, Debin, Gouk, Henry, Hospedales, Timothy
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 640
container_issue
container_start_page 631
container_title
container_volume
creator Zhang, Xueting
Meng, Debin
Gouk, Henry
Hospedales, Timothy
description Many state-of-the-art few-shot learners focus on developing effective training procedures for feature representations, before using simple (e.g., nearest centroid) classifiers. We take an approach that is agnostic to the features used, and focus exclusively on meta-learning the final classifier layer. Specifically, we introduce MetaQDA, a Bayesian meta-learning generalisation of the classic quadratic discriminant analysis. This approach has several benefits of interest to practitioners: meta-learning is fast and memory efficient, without the need to fine-tune features. It is agnostic to the off-the-shelf features chosen, and thus will continue to benefit from future advances in feature representations. Empirically, it leads to excellent performance in cross-domain few-shot learning, class-incremental few-shot learning, and crucially for real-world applications, the Bayesian formulation leads to state-of-the-art uncertainty calibration in predictions.
doi_str_mv 10.1109/ICCV48922.2021.00069
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9710819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9710819</ieee_id><sourcerecordid>9710819</sourcerecordid><originalsourceid>FETCH-LOGICAL-i249t-d028e9dc80f042b1775104e26504de62680849048c85c0fc567315bf56526de53</originalsourceid><addsrcrecordid>eNotjl1LwzAUQKMgOOd-gT7kD2Te3CbpzaMrTgcVwfnxOLL2dovURtrC2L93oE8HzsPhCHGrYa41-LtVUXwY8ohzBNRzAHD-TMx8Tto5a5A02nMxwYxA5RbMpbgahi-AzCO5iVis96Ft00EuwpGHGDr5zGOQJYe-i91ONqmXrxxa9Zn6tpZLPqj1Po0nV6VdF8eYumtx0YR24Nk_p-J9-fBWPKny5XFV3JcqovGjqgGJfV0RNGBwq_PcajCM7jRVs0NHQMaDoYpsBU1lXZ5pu22ss-hqttlU3Px1IzNvfvr4HfrjxucaSPvsF2QwSNk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Shallow Bayesian Meta Learning for Real-World Few-Shot Recognition</title><source>IEEE Xplore All Conference Series</source><creator>Zhang, Xueting ; Meng, Debin ; Gouk, Henry ; Hospedales, Timothy</creator><creatorcontrib>Zhang, Xueting ; Meng, Debin ; Gouk, Henry ; Hospedales, Timothy</creatorcontrib><description>Many state-of-the-art few-shot learners focus on developing effective training procedures for feature representations, before using simple (e.g., nearest centroid) classifiers. We take an approach that is agnostic to the features used, and focus exclusively on meta-learning the final classifier layer. Specifically, we introduce MetaQDA, a Bayesian meta-learning generalisation of the classic quadratic discriminant analysis. This approach has several benefits of interest to practitioners: meta-learning is fast and memory efficient, without the need to fine-tune features. It is agnostic to the off-the-shelf features chosen, and thus will continue to benefit from future advances in feature representations. Empirically, it leads to excellent performance in cross-domain few-shot learning, class-incremental few-shot learning, and crucially for real-world applications, the Bayesian formulation leads to state-of-the-art uncertainty calibration in predictions.</description><identifier>EISSN: 2380-7504</identifier><identifier>EISBN: 9781665428125</identifier><identifier>EISBN: 1665428120</identifier><identifier>DOI: 10.1109/ICCV48922.2021.00069</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer vision ; Feature extraction ; Machine learning architectures and formulations ; Measurement ; Memory management ; Optimization and learning methods ; Recognition and classification ; Representation learning ; Training ; Transfer/Low-shot/Semi/Unsupervised Learning ; Uncertainty</subject><ispartof>2021 IEEE/CVF International Conference on Computer Vision (ICCV), 2021, p.631-640</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9710819$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9710819$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Xueting</creatorcontrib><creatorcontrib>Meng, Debin</creatorcontrib><creatorcontrib>Gouk, Henry</creatorcontrib><creatorcontrib>Hospedales, Timothy</creatorcontrib><title>Shallow Bayesian Meta Learning for Real-World Few-Shot Recognition</title><title>2021 IEEE/CVF International Conference on Computer Vision (ICCV)</title><addtitle>ICCV</addtitle><description>Many state-of-the-art few-shot learners focus on developing effective training procedures for feature representations, before using simple (e.g., nearest centroid) classifiers. We take an approach that is agnostic to the features used, and focus exclusively on meta-learning the final classifier layer. Specifically, we introduce MetaQDA, a Bayesian meta-learning generalisation of the classic quadratic discriminant analysis. This approach has several benefits of interest to practitioners: meta-learning is fast and memory efficient, without the need to fine-tune features. It is agnostic to the off-the-shelf features chosen, and thus will continue to benefit from future advances in feature representations. Empirically, it leads to excellent performance in cross-domain few-shot learning, class-incremental few-shot learning, and crucially for real-world applications, the Bayesian formulation leads to state-of-the-art uncertainty calibration in predictions.</description><subject>Computer vision</subject><subject>Feature extraction</subject><subject>Machine learning architectures and formulations</subject><subject>Measurement</subject><subject>Memory management</subject><subject>Optimization and learning methods</subject><subject>Recognition and classification</subject><subject>Representation learning</subject><subject>Training</subject><subject>Transfer/Low-shot/Semi/Unsupervised Learning</subject><subject>Uncertainty</subject><issn>2380-7504</issn><isbn>9781665428125</isbn><isbn>1665428120</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjl1LwzAUQKMgOOd-gT7kD2Te3CbpzaMrTgcVwfnxOLL2dovURtrC2L93oE8HzsPhCHGrYa41-LtVUXwY8ohzBNRzAHD-TMx8Tto5a5A02nMxwYxA5RbMpbgahi-AzCO5iVis96Ft00EuwpGHGDr5zGOQJYe-i91ONqmXrxxa9Zn6tpZLPqj1Po0nV6VdF8eYumtx0YR24Nk_p-J9-fBWPKny5XFV3JcqovGjqgGJfV0RNGBwq_PcajCM7jRVs0NHQMaDoYpsBU1lXZ5pu22ss-hqttlU3Px1IzNvfvr4HfrjxucaSPvsF2QwSNk</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Zhang, Xueting</creator><creator>Meng, Debin</creator><creator>Gouk, Henry</creator><creator>Hospedales, Timothy</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20210101</creationdate><title>Shallow Bayesian Meta Learning for Real-World Few-Shot Recognition</title><author>Zhang, Xueting ; Meng, Debin ; Gouk, Henry ; Hospedales, Timothy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i249t-d028e9dc80f042b1775104e26504de62680849048c85c0fc567315bf56526de53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computer vision</topic><topic>Feature extraction</topic><topic>Machine learning architectures and formulations</topic><topic>Measurement</topic><topic>Memory management</topic><topic>Optimization and learning methods</topic><topic>Recognition and classification</topic><topic>Representation learning</topic><topic>Training</topic><topic>Transfer/Low-shot/Semi/Unsupervised Learning</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xueting</creatorcontrib><creatorcontrib>Meng, Debin</creatorcontrib><creatorcontrib>Gouk, Henry</creatorcontrib><creatorcontrib>Hospedales, Timothy</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Xueting</au><au>Meng, Debin</au><au>Gouk, Henry</au><au>Hospedales, Timothy</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Shallow Bayesian Meta Learning for Real-World Few-Shot Recognition</atitle><btitle>2021 IEEE/CVF International Conference on Computer Vision (ICCV)</btitle><stitle>ICCV</stitle><date>2021-01-01</date><risdate>2021</risdate><spage>631</spage><epage>640</epage><pages>631-640</pages><eissn>2380-7504</eissn><eisbn>9781665428125</eisbn><eisbn>1665428120</eisbn><coden>IEEPAD</coden><abstract>Many state-of-the-art few-shot learners focus on developing effective training procedures for feature representations, before using simple (e.g., nearest centroid) classifiers. We take an approach that is agnostic to the features used, and focus exclusively on meta-learning the final classifier layer. Specifically, we introduce MetaQDA, a Bayesian meta-learning generalisation of the classic quadratic discriminant analysis. This approach has several benefits of interest to practitioners: meta-learning is fast and memory efficient, without the need to fine-tune features. It is agnostic to the off-the-shelf features chosen, and thus will continue to benefit from future advances in feature representations. Empirically, it leads to excellent performance in cross-domain few-shot learning, class-incremental few-shot learning, and crucially for real-world applications, the Bayesian formulation leads to state-of-the-art uncertainty calibration in predictions.</abstract><pub>IEEE</pub><doi>10.1109/ICCV48922.2021.00069</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2380-7504
ispartof 2021 IEEE/CVF International Conference on Computer Vision (ICCV), 2021, p.631-640
issn 2380-7504
language eng
recordid cdi_ieee_primary_9710819
source IEEE Xplore All Conference Series
subjects Computer vision
Feature extraction
Machine learning architectures and formulations
Measurement
Memory management
Optimization and learning methods
Recognition and classification
Representation learning
Training
Transfer/Low-shot/Semi/Unsupervised Learning
Uncertainty
title Shallow Bayesian Meta Learning for Real-World Few-Shot Recognition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A34%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Shallow%20Bayesian%20Meta%20Learning%20for%20Real-World%20Few-Shot%20Recognition&rft.btitle=2021%20IEEE/CVF%20International%20Conference%20on%20Computer%20Vision%20(ICCV)&rft.au=Zhang,%20Xueting&rft.date=2021-01-01&rft.spage=631&rft.epage=640&rft.pages=631-640&rft.eissn=2380-7504&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICCV48922.2021.00069&rft.eisbn=9781665428125&rft.eisbn_list=1665428120&rft_dat=%3Cieee_CHZPO%3E9710819%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i249t-d028e9dc80f042b1775104e26504de62680849048c85c0fc567315bf56526de53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9710819&rfr_iscdi=true