Loading…

Visualization of Human Skeletal Muscle Mechanical Anisotropy by Using Dual-Direction Shear Wave Imaging

Objective: Ultrasound (US) shear wave elasticity imaging (SWEI) is a mature technique for diagnosing the elasticity of isotropic tissues. However, the elasticity of anisotropic tissues, such as muscle and tendon, cannot be diagnosed correctly using SWEI because the shear wave velocity (SWV) varies w...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering 2022-09, Vol.69 (9), p.2745-2754
Main Authors: Xu, Guo-Xuan, Chen, Pei-Yu, Jiang, Xiaoning, Huang, Chih-Chung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Objective: Ultrasound (US) shear wave elasticity imaging (SWEI) is a mature technique for diagnosing the elasticity of isotropic tissues. However, the elasticity of anisotropic tissues, such as muscle and tendon, cannot be diagnosed correctly using SWEI because the shear wave velocity (SWV) varies with tissue fiber orientations. Recently, SWEI has been studied for measuring the anisotropic properties of muscles by rotating the transducer; however, this is difficult for clinical practice. Methods: In this study, a novel dual-direction shear wave imaging (DDSWI) technique was proposed for visualizing the mechanical anisotropy of muscles without rotation. Longitudinal and transverse shear waves were created by a specially designed external vibrator and supersonic pushing beam, respectively; the SWVs were then tracked using ultrafast US imaging. Subsequently, the SWV maps of two directions were obtained at the same scanning cross section, and the mechanical anisotropy was represented as the ratio between them at each pixel. Results: The performance of DDSWI was verified using a standard phantom, and human experiments were performed on the gastrocnemius and biceps brachii. Experimental results of phantom revealed DDSWI exhibited a high precision of
ISSN:0018-9294
1558-2531
DOI:10.1109/TBME.2022.3152896