Loading…
Circuitree: A Datalog Reasoner in Zero-Knowledge
Driven by the increased consciousness in data ownership and privacy, zero-knowledge proofs (ZKPs) have become a popular tool to convince a third party of the truthfulness of a statement without disclosing any further information. As ZKPs are rather complex to design, frameworks that transform high-l...
Saved in:
Published in: | IEEE access 2022-01, Vol.10, p.21384-21396 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Driven by the increased consciousness in data ownership and privacy, zero-knowledge proofs (ZKPs) have become a popular tool to convince a third party of the truthfulness of a statement without disclosing any further information. As ZKPs are rather complex to design, frameworks that transform high-level languages into ZKPs have been proposed. We propose Circuitree, a Datalog reasoner in zero-knowledge. Datalog is a high-level declarative logic language that is generally used for querying. Furthermore, as a logic language, it can also be used to solve logic problems. An application using Circuitree can efficiently generate ZKPs, based on Datalog rules and encrypted data, to prove that a certain conclusion follows from a Datalog ruleset and encrypted input data. Compared to existing frameworks, which generally use their own limited imperative languages, Circuitree uses an existing high-level declarative language. We point out several applications for Circuitree, including EU Digital COVID Certificates and privacy-preserving access control for peer-to-peer (p2p) networks. Circuitree's performance is evaluated for access control in a p2p network. First results show that our approach allows for fast proofs and proof verification for this application. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2022.3153366 |