Loading…

Hybrid Filtered Disturbance Observer for Precise Motion Generation of a Powered Exoskeleton

Lower-limb exoskeletons are promising applications of robotic rehabilitation for people with motor impairment. As current studies have tailored the design of gait trajectories for the target users, realizing a high-precision motion control is a critical issue for safe and effective assistance. The w...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial electronics (1982) 2023-01, Vol.70 (1), p.646-656
Main Authors: Park, Kyeong-Won, Choi, Jungsu, Kong, Kyoungchul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-2b0ec157e65faa48d5ecb7b04a276a5a647b71992681454bd9392d94dc26e6993
cites cdi_FETCH-LOGICAL-c291t-2b0ec157e65faa48d5ecb7b04a276a5a647b71992681454bd9392d94dc26e6993
container_end_page 656
container_issue 1
container_start_page 646
container_title IEEE transactions on industrial electronics (1982)
container_volume 70
creator Park, Kyeong-Won
Choi, Jungsu
Kong, Kyoungchul
description Lower-limb exoskeletons are promising applications of robotic rehabilitation for people with motor impairment. As current studies have tailored the design of gait trajectories for the target users, realizing a high-precision motion control is a critical issue for safe and effective assistance. The walking assistance involves unique characteristic phases that embody different physical constraints and requirements for assistance. Conventional methods often utilized gain-switching control for time-varying adaptation. However, despite their intuitiveness as well as simplicity, the control performance was unsatisfying due to unmodeled responses by human behavior and continuous interaction with the external environment. To tackle these challenges, this study proposes a hybrid control method applied to the disturbance observer that can provide robust robotic rehabilitation. The proposed method adaptively identifies the exoskeletal system as a hybrid nominal model and online exchanges model-based tracking controllers parallelly to the gait phase of a user. Furthermore, a unique filter named allowance filter is introduced to compensate for the plant dynamics, preventing instability of the inverted plant and realizing digital implementation. In this article, a practical user with complete paraplegia participated in the experiments for verification of the proposed methods.
doi_str_mv 10.1109/TIE.2022.3152016
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9720196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9720196</ieee_id><sourcerecordid>2706891771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-2b0ec157e65faa48d5ecb7b04a276a5a647b71992681454bd9392d94dc26e6993</originalsourceid><addsrcrecordid>eNo9kMtLAzEQh4MoWKt3wUvA89Ykm8fmKLUvqLSHevIQkt1ZSK2bmmzV_vduH3iagfl9M8OH0D0lA0qJflrNRgNGGBvkVDBC5QXqUSFUpjUvLlGPMFVkhHB5jW5SWhNCuaCih96nexd9hcd-00KECr_41O6is00JeOESxG-IuA4RLyOUPgF-Da0PDZ5AA9Ee21Bji5fh58iPfkP6gA20oblFV7XdJLg71z56G49Ww2k2X0xmw-d5VjJN24w5AiUVCqSoreVFJaB0yhFumZJWWMmVU1RrJovuae4qnWtWaV6VTILUOu-jx9PebQxfO0itWYddbLqThikiC02Vol2KnFJlDClFqM02-k8b94YSc1BoOoXmoNCcFXbIwwnxAPAf16obapn_AYW9bIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706891771</pqid></control><display><type>article</type><title>Hybrid Filtered Disturbance Observer for Precise Motion Generation of a Powered Exoskeleton</title><source>IEEE Xplore (Online service)</source><creator>Park, Kyeong-Won ; Choi, Jungsu ; Kong, Kyoungchul</creator><creatorcontrib>Park, Kyeong-Won ; Choi, Jungsu ; Kong, Kyoungchul</creatorcontrib><description>Lower-limb exoskeletons are promising applications of robotic rehabilitation for people with motor impairment. As current studies have tailored the design of gait trajectories for the target users, realizing a high-precision motion control is a critical issue for safe and effective assistance. The walking assistance involves unique characteristic phases that embody different physical constraints and requirements for assistance. Conventional methods often utilized gain-switching control for time-varying adaptation. However, despite their intuitiveness as well as simplicity, the control performance was unsatisfying due to unmodeled responses by human behavior and continuous interaction with the external environment. To tackle these challenges, this study proposes a hybrid control method applied to the disturbance observer that can provide robust robotic rehabilitation. The proposed method adaptively identifies the exoskeletal system as a hybrid nominal model and online exchanges model-based tracking controllers parallelly to the gait phase of a user. Furthermore, a unique filter named allowance filter is introduced to compensate for the plant dynamics, preventing instability of the inverted plant and realizing digital implementation. In this article, a practical user with complete paraplegia participated in the experiments for verification of the proposed methods.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2022.3152016</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Assistive control ; Control methods ; disturbance observer (DOB) ; Disturbance observers ; Dynamic stability ; Dynamics ; Exoskeletons ; Gait ; Hybrid control ; Hybrid systems ; Legged locomotion ; Motion control ; Paraplegics ; Rehabilitation ; Robots ; robust control ; Thigh ; Torque ; Tracking control ; wearable robotics</subject><ispartof>IEEE transactions on industrial electronics (1982), 2023-01, Vol.70 (1), p.646-656</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-2b0ec157e65faa48d5ecb7b04a276a5a647b71992681454bd9392d94dc26e6993</citedby><cites>FETCH-LOGICAL-c291t-2b0ec157e65faa48d5ecb7b04a276a5a647b71992681454bd9392d94dc26e6993</cites><orcidid>0000-0002-5785-0044 ; 0000-0002-3515-8989 ; 0000-0002-7863-0593</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9720196$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Park, Kyeong-Won</creatorcontrib><creatorcontrib>Choi, Jungsu</creatorcontrib><creatorcontrib>Kong, Kyoungchul</creatorcontrib><title>Hybrid Filtered Disturbance Observer for Precise Motion Generation of a Powered Exoskeleton</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>Lower-limb exoskeletons are promising applications of robotic rehabilitation for people with motor impairment. As current studies have tailored the design of gait trajectories for the target users, realizing a high-precision motion control is a critical issue for safe and effective assistance. The walking assistance involves unique characteristic phases that embody different physical constraints and requirements for assistance. Conventional methods often utilized gain-switching control for time-varying adaptation. However, despite their intuitiveness as well as simplicity, the control performance was unsatisfying due to unmodeled responses by human behavior and continuous interaction with the external environment. To tackle these challenges, this study proposes a hybrid control method applied to the disturbance observer that can provide robust robotic rehabilitation. The proposed method adaptively identifies the exoskeletal system as a hybrid nominal model and online exchanges model-based tracking controllers parallelly to the gait phase of a user. Furthermore, a unique filter named allowance filter is introduced to compensate for the plant dynamics, preventing instability of the inverted plant and realizing digital implementation. In this article, a practical user with complete paraplegia participated in the experiments for verification of the proposed methods.</description><subject>Adaptation models</subject><subject>Assistive control</subject><subject>Control methods</subject><subject>disturbance observer (DOB)</subject><subject>Disturbance observers</subject><subject>Dynamic stability</subject><subject>Dynamics</subject><subject>Exoskeletons</subject><subject>Gait</subject><subject>Hybrid control</subject><subject>Hybrid systems</subject><subject>Legged locomotion</subject><subject>Motion control</subject><subject>Paraplegics</subject><subject>Rehabilitation</subject><subject>Robots</subject><subject>robust control</subject><subject>Thigh</subject><subject>Torque</subject><subject>Tracking control</subject><subject>wearable robotics</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kMtLAzEQh4MoWKt3wUvA89Ykm8fmKLUvqLSHevIQkt1ZSK2bmmzV_vduH3iagfl9M8OH0D0lA0qJflrNRgNGGBvkVDBC5QXqUSFUpjUvLlGPMFVkhHB5jW5SWhNCuaCih96nexd9hcd-00KECr_41O6is00JeOESxG-IuA4RLyOUPgF-Da0PDZ5AA9Ee21Bji5fh58iPfkP6gA20oblFV7XdJLg71z56G49Ww2k2X0xmw-d5VjJN24w5AiUVCqSoreVFJaB0yhFumZJWWMmVU1RrJovuae4qnWtWaV6VTILUOu-jx9PebQxfO0itWYddbLqThikiC02Vol2KnFJlDClFqM02-k8b94YSc1BoOoXmoNCcFXbIwwnxAPAf16obapn_AYW9bIA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Park, Kyeong-Won</creator><creator>Choi, Jungsu</creator><creator>Kong, Kyoungchul</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5785-0044</orcidid><orcidid>https://orcid.org/0000-0002-3515-8989</orcidid><orcidid>https://orcid.org/0000-0002-7863-0593</orcidid></search><sort><creationdate>20230101</creationdate><title>Hybrid Filtered Disturbance Observer for Precise Motion Generation of a Powered Exoskeleton</title><author>Park, Kyeong-Won ; Choi, Jungsu ; Kong, Kyoungchul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-2b0ec157e65faa48d5ecb7b04a276a5a647b71992681454bd9392d94dc26e6993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation models</topic><topic>Assistive control</topic><topic>Control methods</topic><topic>disturbance observer (DOB)</topic><topic>Disturbance observers</topic><topic>Dynamic stability</topic><topic>Dynamics</topic><topic>Exoskeletons</topic><topic>Gait</topic><topic>Hybrid control</topic><topic>Hybrid systems</topic><topic>Legged locomotion</topic><topic>Motion control</topic><topic>Paraplegics</topic><topic>Rehabilitation</topic><topic>Robots</topic><topic>robust control</topic><topic>Thigh</topic><topic>Torque</topic><topic>Tracking control</topic><topic>wearable robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Kyeong-Won</creatorcontrib><creatorcontrib>Choi, Jungsu</creatorcontrib><creatorcontrib>Kong, Kyoungchul</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Kyeong-Won</au><au>Choi, Jungsu</au><au>Kong, Kyoungchul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Filtered Disturbance Observer for Precise Motion Generation of a Powered Exoskeleton</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>70</volume><issue>1</issue><spage>646</spage><epage>656</epage><pages>646-656</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>Lower-limb exoskeletons are promising applications of robotic rehabilitation for people with motor impairment. As current studies have tailored the design of gait trajectories for the target users, realizing a high-precision motion control is a critical issue for safe and effective assistance. The walking assistance involves unique characteristic phases that embody different physical constraints and requirements for assistance. Conventional methods often utilized gain-switching control for time-varying adaptation. However, despite their intuitiveness as well as simplicity, the control performance was unsatisfying due to unmodeled responses by human behavior and continuous interaction with the external environment. To tackle these challenges, this study proposes a hybrid control method applied to the disturbance observer that can provide robust robotic rehabilitation. The proposed method adaptively identifies the exoskeletal system as a hybrid nominal model and online exchanges model-based tracking controllers parallelly to the gait phase of a user. Furthermore, a unique filter named allowance filter is introduced to compensate for the plant dynamics, preventing instability of the inverted plant and realizing digital implementation. In this article, a practical user with complete paraplegia participated in the experiments for verification of the proposed methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2022.3152016</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5785-0044</orcidid><orcidid>https://orcid.org/0000-0002-3515-8989</orcidid><orcidid>https://orcid.org/0000-0002-7863-0593</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2023-01, Vol.70 (1), p.646-656
issn 0278-0046
1557-9948
language eng
recordid cdi_ieee_primary_9720196
source IEEE Xplore (Online service)
subjects Adaptation models
Assistive control
Control methods
disturbance observer (DOB)
Disturbance observers
Dynamic stability
Dynamics
Exoskeletons
Gait
Hybrid control
Hybrid systems
Legged locomotion
Motion control
Paraplegics
Rehabilitation
Robots
robust control
Thigh
Torque
Tracking control
wearable robotics
title Hybrid Filtered Disturbance Observer for Precise Motion Generation of a Powered Exoskeleton
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A42%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Filtered%20Disturbance%20Observer%20for%20Precise%20Motion%20Generation%20of%20a%20Powered%20Exoskeleton&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Park,%20Kyeong-Won&rft.date=2023-01-01&rft.volume=70&rft.issue=1&rft.spage=646&rft.epage=656&rft.pages=646-656&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2022.3152016&rft_dat=%3Cproquest_ieee_%3E2706891771%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-2b0ec157e65faa48d5ecb7b04a276a5a647b71992681454bd9392d94dc26e6993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2706891771&rft_id=info:pmid/&rft_ieee_id=9720196&rfr_iscdi=true