Loading…
Hybrid Filtered Disturbance Observer for Precise Motion Generation of a Powered Exoskeleton
Lower-limb exoskeletons are promising applications of robotic rehabilitation for people with motor impairment. As current studies have tailored the design of gait trajectories for the target users, realizing a high-precision motion control is a critical issue for safe and effective assistance. The w...
Saved in:
Published in: | IEEE transactions on industrial electronics (1982) 2023-01, Vol.70 (1), p.646-656 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-2b0ec157e65faa48d5ecb7b04a276a5a647b71992681454bd9392d94dc26e6993 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-2b0ec157e65faa48d5ecb7b04a276a5a647b71992681454bd9392d94dc26e6993 |
container_end_page | 656 |
container_issue | 1 |
container_start_page | 646 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 70 |
creator | Park, Kyeong-Won Choi, Jungsu Kong, Kyoungchul |
description | Lower-limb exoskeletons are promising applications of robotic rehabilitation for people with motor impairment. As current studies have tailored the design of gait trajectories for the target users, realizing a high-precision motion control is a critical issue for safe and effective assistance. The walking assistance involves unique characteristic phases that embody different physical constraints and requirements for assistance. Conventional methods often utilized gain-switching control for time-varying adaptation. However, despite their intuitiveness as well as simplicity, the control performance was unsatisfying due to unmodeled responses by human behavior and continuous interaction with the external environment. To tackle these challenges, this study proposes a hybrid control method applied to the disturbance observer that can provide robust robotic rehabilitation. The proposed method adaptively identifies the exoskeletal system as a hybrid nominal model and online exchanges model-based tracking controllers parallelly to the gait phase of a user. Furthermore, a unique filter named allowance filter is introduced to compensate for the plant dynamics, preventing instability of the inverted plant and realizing digital implementation. In this article, a practical user with complete paraplegia participated in the experiments for verification of the proposed methods. |
doi_str_mv | 10.1109/TIE.2022.3152016 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9720196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9720196</ieee_id><sourcerecordid>2706891771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-2b0ec157e65faa48d5ecb7b04a276a5a647b71992681454bd9392d94dc26e6993</originalsourceid><addsrcrecordid>eNo9kMtLAzEQh4MoWKt3wUvA89Ykm8fmKLUvqLSHevIQkt1ZSK2bmmzV_vduH3iagfl9M8OH0D0lA0qJflrNRgNGGBvkVDBC5QXqUSFUpjUvLlGPMFVkhHB5jW5SWhNCuaCih96nexd9hcd-00KECr_41O6is00JeOESxG-IuA4RLyOUPgF-Da0PDZ5AA9Ee21Bji5fh58iPfkP6gA20oblFV7XdJLg71z56G49Ww2k2X0xmw-d5VjJN24w5AiUVCqSoreVFJaB0yhFumZJWWMmVU1RrJovuae4qnWtWaV6VTILUOu-jx9PebQxfO0itWYddbLqThikiC02Vol2KnFJlDClFqM02-k8b94YSc1BoOoXmoNCcFXbIwwnxAPAf16obapn_AYW9bIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706891771</pqid></control><display><type>article</type><title>Hybrid Filtered Disturbance Observer for Precise Motion Generation of a Powered Exoskeleton</title><source>IEEE Xplore (Online service)</source><creator>Park, Kyeong-Won ; Choi, Jungsu ; Kong, Kyoungchul</creator><creatorcontrib>Park, Kyeong-Won ; Choi, Jungsu ; Kong, Kyoungchul</creatorcontrib><description>Lower-limb exoskeletons are promising applications of robotic rehabilitation for people with motor impairment. As current studies have tailored the design of gait trajectories for the target users, realizing a high-precision motion control is a critical issue for safe and effective assistance. The walking assistance involves unique characteristic phases that embody different physical constraints and requirements for assistance. Conventional methods often utilized gain-switching control for time-varying adaptation. However, despite their intuitiveness as well as simplicity, the control performance was unsatisfying due to unmodeled responses by human behavior and continuous interaction with the external environment. To tackle these challenges, this study proposes a hybrid control method applied to the disturbance observer that can provide robust robotic rehabilitation. The proposed method adaptively identifies the exoskeletal system as a hybrid nominal model and online exchanges model-based tracking controllers parallelly to the gait phase of a user. Furthermore, a unique filter named allowance filter is introduced to compensate for the plant dynamics, preventing instability of the inverted plant and realizing digital implementation. In this article, a practical user with complete paraplegia participated in the experiments for verification of the proposed methods.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2022.3152016</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Assistive control ; Control methods ; disturbance observer (DOB) ; Disturbance observers ; Dynamic stability ; Dynamics ; Exoskeletons ; Gait ; Hybrid control ; Hybrid systems ; Legged locomotion ; Motion control ; Paraplegics ; Rehabilitation ; Robots ; robust control ; Thigh ; Torque ; Tracking control ; wearable robotics</subject><ispartof>IEEE transactions on industrial electronics (1982), 2023-01, Vol.70 (1), p.646-656</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-2b0ec157e65faa48d5ecb7b04a276a5a647b71992681454bd9392d94dc26e6993</citedby><cites>FETCH-LOGICAL-c291t-2b0ec157e65faa48d5ecb7b04a276a5a647b71992681454bd9392d94dc26e6993</cites><orcidid>0000-0002-5785-0044 ; 0000-0002-3515-8989 ; 0000-0002-7863-0593</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9720196$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Park, Kyeong-Won</creatorcontrib><creatorcontrib>Choi, Jungsu</creatorcontrib><creatorcontrib>Kong, Kyoungchul</creatorcontrib><title>Hybrid Filtered Disturbance Observer for Precise Motion Generation of a Powered Exoskeleton</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>Lower-limb exoskeletons are promising applications of robotic rehabilitation for people with motor impairment. As current studies have tailored the design of gait trajectories for the target users, realizing a high-precision motion control is a critical issue for safe and effective assistance. The walking assistance involves unique characteristic phases that embody different physical constraints and requirements for assistance. Conventional methods often utilized gain-switching control for time-varying adaptation. However, despite their intuitiveness as well as simplicity, the control performance was unsatisfying due to unmodeled responses by human behavior and continuous interaction with the external environment. To tackle these challenges, this study proposes a hybrid control method applied to the disturbance observer that can provide robust robotic rehabilitation. The proposed method adaptively identifies the exoskeletal system as a hybrid nominal model and online exchanges model-based tracking controllers parallelly to the gait phase of a user. Furthermore, a unique filter named allowance filter is introduced to compensate for the plant dynamics, preventing instability of the inverted plant and realizing digital implementation. In this article, a practical user with complete paraplegia participated in the experiments for verification of the proposed methods.</description><subject>Adaptation models</subject><subject>Assistive control</subject><subject>Control methods</subject><subject>disturbance observer (DOB)</subject><subject>Disturbance observers</subject><subject>Dynamic stability</subject><subject>Dynamics</subject><subject>Exoskeletons</subject><subject>Gait</subject><subject>Hybrid control</subject><subject>Hybrid systems</subject><subject>Legged locomotion</subject><subject>Motion control</subject><subject>Paraplegics</subject><subject>Rehabilitation</subject><subject>Robots</subject><subject>robust control</subject><subject>Thigh</subject><subject>Torque</subject><subject>Tracking control</subject><subject>wearable robotics</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kMtLAzEQh4MoWKt3wUvA89Ykm8fmKLUvqLSHevIQkt1ZSK2bmmzV_vduH3iagfl9M8OH0D0lA0qJflrNRgNGGBvkVDBC5QXqUSFUpjUvLlGPMFVkhHB5jW5SWhNCuaCih96nexd9hcd-00KECr_41O6is00JeOESxG-IuA4RLyOUPgF-Da0PDZ5AA9Ee21Bji5fh58iPfkP6gA20oblFV7XdJLg71z56G49Ww2k2X0xmw-d5VjJN24w5AiUVCqSoreVFJaB0yhFumZJWWMmVU1RrJovuae4qnWtWaV6VTILUOu-jx9PebQxfO0itWYddbLqThikiC02Vol2KnFJlDClFqM02-k8b94YSc1BoOoXmoNCcFXbIwwnxAPAf16obapn_AYW9bIA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Park, Kyeong-Won</creator><creator>Choi, Jungsu</creator><creator>Kong, Kyoungchul</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5785-0044</orcidid><orcidid>https://orcid.org/0000-0002-3515-8989</orcidid><orcidid>https://orcid.org/0000-0002-7863-0593</orcidid></search><sort><creationdate>20230101</creationdate><title>Hybrid Filtered Disturbance Observer for Precise Motion Generation of a Powered Exoskeleton</title><author>Park, Kyeong-Won ; Choi, Jungsu ; Kong, Kyoungchul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-2b0ec157e65faa48d5ecb7b04a276a5a647b71992681454bd9392d94dc26e6993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation models</topic><topic>Assistive control</topic><topic>Control methods</topic><topic>disturbance observer (DOB)</topic><topic>Disturbance observers</topic><topic>Dynamic stability</topic><topic>Dynamics</topic><topic>Exoskeletons</topic><topic>Gait</topic><topic>Hybrid control</topic><topic>Hybrid systems</topic><topic>Legged locomotion</topic><topic>Motion control</topic><topic>Paraplegics</topic><topic>Rehabilitation</topic><topic>Robots</topic><topic>robust control</topic><topic>Thigh</topic><topic>Torque</topic><topic>Tracking control</topic><topic>wearable robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Kyeong-Won</creatorcontrib><creatorcontrib>Choi, Jungsu</creatorcontrib><creatorcontrib>Kong, Kyoungchul</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Kyeong-Won</au><au>Choi, Jungsu</au><au>Kong, Kyoungchul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Filtered Disturbance Observer for Precise Motion Generation of a Powered Exoskeleton</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>70</volume><issue>1</issue><spage>646</spage><epage>656</epage><pages>646-656</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>Lower-limb exoskeletons are promising applications of robotic rehabilitation for people with motor impairment. As current studies have tailored the design of gait trajectories for the target users, realizing a high-precision motion control is a critical issue for safe and effective assistance. The walking assistance involves unique characteristic phases that embody different physical constraints and requirements for assistance. Conventional methods often utilized gain-switching control for time-varying adaptation. However, despite their intuitiveness as well as simplicity, the control performance was unsatisfying due to unmodeled responses by human behavior and continuous interaction with the external environment. To tackle these challenges, this study proposes a hybrid control method applied to the disturbance observer that can provide robust robotic rehabilitation. The proposed method adaptively identifies the exoskeletal system as a hybrid nominal model and online exchanges model-based tracking controllers parallelly to the gait phase of a user. Furthermore, a unique filter named allowance filter is introduced to compensate for the plant dynamics, preventing instability of the inverted plant and realizing digital implementation. In this article, a practical user with complete paraplegia participated in the experiments for verification of the proposed methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2022.3152016</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5785-0044</orcidid><orcidid>https://orcid.org/0000-0002-3515-8989</orcidid><orcidid>https://orcid.org/0000-0002-7863-0593</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2023-01, Vol.70 (1), p.646-656 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_ieee_primary_9720196 |
source | IEEE Xplore (Online service) |
subjects | Adaptation models Assistive control Control methods disturbance observer (DOB) Disturbance observers Dynamic stability Dynamics Exoskeletons Gait Hybrid control Hybrid systems Legged locomotion Motion control Paraplegics Rehabilitation Robots robust control Thigh Torque Tracking control wearable robotics |
title | Hybrid Filtered Disturbance Observer for Precise Motion Generation of a Powered Exoskeleton |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A42%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Filtered%20Disturbance%20Observer%20for%20Precise%20Motion%20Generation%20of%20a%20Powered%20Exoskeleton&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Park,%20Kyeong-Won&rft.date=2023-01-01&rft.volume=70&rft.issue=1&rft.spage=646&rft.epage=656&rft.pages=646-656&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2022.3152016&rft_dat=%3Cproquest_ieee_%3E2706891771%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-2b0ec157e65faa48d5ecb7b04a276a5a647b71992681454bd9392d94dc26e6993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2706891771&rft_id=info:pmid/&rft_ieee_id=9720196&rfr_iscdi=true |