Loading…

Deep Meta-Learning Energy-Aware Path Planner for Unmanned Ground Vehicles in Unknown Terrains

This paper presents an adaptive energy-aware prediction and planning framework for vehicles navigating over terrains with varying and unknown properties. A novel feature of the method is the use of a deep meta-learning framework to learn a prior energy model, which can efficiently adapt to the local...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2022, Vol.10, p.30055-30068
Main Authors: Visca, Marco, Powell, Roger, Gao, Yang, Fallah, Saber
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-8fe43ec99693562d009c3179f54d61ad3701316f6225bf6378947681de56f0b63
cites cdi_FETCH-LOGICAL-c408t-8fe43ec99693562d009c3179f54d61ad3701316f6225bf6378947681de56f0b63
container_end_page 30068
container_issue
container_start_page 30055
container_title IEEE access
container_volume 10
creator Visca, Marco
Powell, Roger
Gao, Yang
Fallah, Saber
description This paper presents an adaptive energy-aware prediction and planning framework for vehicles navigating over terrains with varying and unknown properties. A novel feature of the method is the use of a deep meta-learning framework to learn a prior energy model, which can efficiently adapt to the local terrain conditions based on small quantities of exteroceptive and proprioceptive data. A meta-adaptive heuristic function is also proposed for the integration of the energy model into an A* path planner. The performance of the proposed approach is assessed in a 3D-body dynamic simulator over several typologies of deformable terrains and compared with alternative machine learning solutions. We provide evidence of the advantages of the proposed method to adapt to unforeseen terrain conditions, thereby yielding more informed estimations and energy-efficient paths when navigating on unknown terrains.
doi_str_mv 10.1109/ACCESS.2022.3155161
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9722866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9722866</ieee_id><doaj_id>oai_doaj_org_article_04ab89791fea464099ab82b94940117b</doaj_id><sourcerecordid>2641994876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-8fe43ec99693562d009c3179f54d61ad3701316f6225bf6378947681de56f0b63</originalsourceid><addsrcrecordid>eNpNUU1P5DAMrRArgVh-AZdInDvESZrUx9EwfEizWiRgbyhKW2foMCRD2hHi39NShNYX289-z5Zelp0BnwFwvJgvFsv7-5ngQswkFAVoOMiOBWjMZSH14X_1UXbadRs-RDlAhTnOni6JduwP9S5fkUuhDWu2DJTWH_n83SVid65_ZndbFwaQ-ZjYY3gdm4Zdp7gPDftHz229pY61YZi9hPge2AOl5NrQ_c5-ebft6PQ7n2SPV8uHxU2--nt9u5iv8lrxss9LT0pSjahRFlo0nGMtwaAvVKPBNdJwkKC9FqKovJamRGV0CQ0V2vNKy5PsdtJtotvYXWpfXfqw0bX2C4hpbV3qxzctV64q0SB4ckorjjj0okKFigOYatA6n7R2Kb7tqevtJu5TGN63QitAVKUZL8ppq06x6xL5n6vA7WiLnWyxoy3225aBdTaxWiL6YaARotRafgLP54Yo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641994876</pqid></control><display><type>article</type><title>Deep Meta-Learning Energy-Aware Path Planner for Unmanned Ground Vehicles in Unknown Terrains</title><source>IEEE Open Access Journals</source><creator>Visca, Marco ; Powell, Roger ; Gao, Yang ; Fallah, Saber</creator><creatorcontrib>Visca, Marco ; Powell, Roger ; Gao, Yang ; Fallah, Saber</creatorcontrib><description>This paper presents an adaptive energy-aware prediction and planning framework for vehicles navigating over terrains with varying and unknown properties. A novel feature of the method is the use of a deep meta-learning framework to learn a prior energy model, which can efficiently adapt to the local terrain conditions based on small quantities of exteroceptive and proprioceptive data. A meta-adaptive heuristic function is also proposed for the integration of the energy model into an A* path planner. The performance of the proposed approach is assessed in a 3D-body dynamic simulator over several typologies of deformable terrains and compared with alternative machine learning solutions. We provide evidence of the advantages of the proposed method to adapt to unforeseen terrain conditions, thereby yielding more informed estimations and energy-efficient paths when navigating on unknown terrains.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3155161</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Deep learning ; driving energy prediction ; Energy consumption ; Energy management ; Formability ; Machine learning ; Mathematical models ; meta-learning ; Neural networks ; Optimization ; path planning ; Planning ; Task analysis ; Terrain ; Unmanned ground vehicles</subject><ispartof>IEEE access, 2022, Vol.10, p.30055-30068</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-8fe43ec99693562d009c3179f54d61ad3701316f6225bf6378947681de56f0b63</citedby><cites>FETCH-LOGICAL-c408t-8fe43ec99693562d009c3179f54d61ad3701316f6225bf6378947681de56f0b63</cites><orcidid>0000-0003-0917-9134 ; 0000-0001-8497-8302 ; 0000-0002-2150-5986 ; 0000-0002-1298-1040</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9722866$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Visca, Marco</creatorcontrib><creatorcontrib>Powell, Roger</creatorcontrib><creatorcontrib>Gao, Yang</creatorcontrib><creatorcontrib>Fallah, Saber</creatorcontrib><title>Deep Meta-Learning Energy-Aware Path Planner for Unmanned Ground Vehicles in Unknown Terrains</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper presents an adaptive energy-aware prediction and planning framework for vehicles navigating over terrains with varying and unknown properties. A novel feature of the method is the use of a deep meta-learning framework to learn a prior energy model, which can efficiently adapt to the local terrain conditions based on small quantities of exteroceptive and proprioceptive data. A meta-adaptive heuristic function is also proposed for the integration of the energy model into an A* path planner. The performance of the proposed approach is assessed in a 3D-body dynamic simulator over several typologies of deformable terrains and compared with alternative machine learning solutions. We provide evidence of the advantages of the proposed method to adapt to unforeseen terrain conditions, thereby yielding more informed estimations and energy-efficient paths when navigating on unknown terrains.</description><subject>Adaptation models</subject><subject>Deep learning</subject><subject>driving energy prediction</subject><subject>Energy consumption</subject><subject>Energy management</subject><subject>Formability</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>meta-learning</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>path planning</subject><subject>Planning</subject><subject>Task analysis</subject><subject>Terrain</subject><subject>Unmanned ground vehicles</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1P5DAMrRArgVh-AZdInDvESZrUx9EwfEizWiRgbyhKW2foMCRD2hHi39NShNYX289-z5Zelp0BnwFwvJgvFsv7-5ngQswkFAVoOMiOBWjMZSH14X_1UXbadRs-RDlAhTnOni6JduwP9S5fkUuhDWu2DJTWH_n83SVid65_ZndbFwaQ-ZjYY3gdm4Zdp7gPDftHz229pY61YZi9hPge2AOl5NrQ_c5-ebft6PQ7n2SPV8uHxU2--nt9u5iv8lrxss9LT0pSjahRFlo0nGMtwaAvVKPBNdJwkKC9FqKovJamRGV0CQ0V2vNKy5PsdtJtotvYXWpfXfqw0bX2C4hpbV3qxzctV64q0SB4ckorjjj0okKFigOYatA6n7R2Kb7tqevtJu5TGN63QitAVKUZL8ppq06x6xL5n6vA7WiLnWyxoy3225aBdTaxWiL6YaARotRafgLP54Yo</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Visca, Marco</creator><creator>Powell, Roger</creator><creator>Gao, Yang</creator><creator>Fallah, Saber</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0917-9134</orcidid><orcidid>https://orcid.org/0000-0001-8497-8302</orcidid><orcidid>https://orcid.org/0000-0002-2150-5986</orcidid><orcidid>https://orcid.org/0000-0002-1298-1040</orcidid></search><sort><creationdate>2022</creationdate><title>Deep Meta-Learning Energy-Aware Path Planner for Unmanned Ground Vehicles in Unknown Terrains</title><author>Visca, Marco ; Powell, Roger ; Gao, Yang ; Fallah, Saber</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-8fe43ec99693562d009c3179f54d61ad3701316f6225bf6378947681de56f0b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation models</topic><topic>Deep learning</topic><topic>driving energy prediction</topic><topic>Energy consumption</topic><topic>Energy management</topic><topic>Formability</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>meta-learning</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>path planning</topic><topic>Planning</topic><topic>Task analysis</topic><topic>Terrain</topic><topic>Unmanned ground vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Visca, Marco</creatorcontrib><creatorcontrib>Powell, Roger</creatorcontrib><creatorcontrib>Gao, Yang</creatorcontrib><creatorcontrib>Fallah, Saber</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Visca, Marco</au><au>Powell, Roger</au><au>Gao, Yang</au><au>Fallah, Saber</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Meta-Learning Energy-Aware Path Planner for Unmanned Ground Vehicles in Unknown Terrains</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>30055</spage><epage>30068</epage><pages>30055-30068</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper presents an adaptive energy-aware prediction and planning framework for vehicles navigating over terrains with varying and unknown properties. A novel feature of the method is the use of a deep meta-learning framework to learn a prior energy model, which can efficiently adapt to the local terrain conditions based on small quantities of exteroceptive and proprioceptive data. A meta-adaptive heuristic function is also proposed for the integration of the energy model into an A* path planner. The performance of the proposed approach is assessed in a 3D-body dynamic simulator over several typologies of deformable terrains and compared with alternative machine learning solutions. We provide evidence of the advantages of the proposed method to adapt to unforeseen terrain conditions, thereby yielding more informed estimations and energy-efficient paths when navigating on unknown terrains.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3155161</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0917-9134</orcidid><orcidid>https://orcid.org/0000-0001-8497-8302</orcidid><orcidid>https://orcid.org/0000-0002-2150-5986</orcidid><orcidid>https://orcid.org/0000-0002-1298-1040</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.30055-30068
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9722866
source IEEE Open Access Journals
subjects Adaptation models
Deep learning
driving energy prediction
Energy consumption
Energy management
Formability
Machine learning
Mathematical models
meta-learning
Neural networks
Optimization
path planning
Planning
Task analysis
Terrain
Unmanned ground vehicles
title Deep Meta-Learning Energy-Aware Path Planner for Unmanned Ground Vehicles in Unknown Terrains
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A16%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Meta-Learning%20Energy-Aware%20Path%20Planner%20for%20Unmanned%20Ground%20Vehicles%20in%20Unknown%20Terrains&rft.jtitle=IEEE%20access&rft.au=Visca,%20Marco&rft.date=2022&rft.volume=10&rft.spage=30055&rft.epage=30068&rft.pages=30055-30068&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3155161&rft_dat=%3Cproquest_ieee_%3E2641994876%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-8fe43ec99693562d009c3179f54d61ad3701316f6225bf6378947681de56f0b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2641994876&rft_id=info:pmid/&rft_ieee_id=9722866&rfr_iscdi=true