Loading…
Deep Meta-Learning Energy-Aware Path Planner for Unmanned Ground Vehicles in Unknown Terrains
This paper presents an adaptive energy-aware prediction and planning framework for vehicles navigating over terrains with varying and unknown properties. A novel feature of the method is the use of a deep meta-learning framework to learn a prior energy model, which can efficiently adapt to the local...
Saved in:
Published in: | IEEE access 2022, Vol.10, p.30055-30068 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-8fe43ec99693562d009c3179f54d61ad3701316f6225bf6378947681de56f0b63 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-8fe43ec99693562d009c3179f54d61ad3701316f6225bf6378947681de56f0b63 |
container_end_page | 30068 |
container_issue | |
container_start_page | 30055 |
container_title | IEEE access |
container_volume | 10 |
creator | Visca, Marco Powell, Roger Gao, Yang Fallah, Saber |
description | This paper presents an adaptive energy-aware prediction and planning framework for vehicles navigating over terrains with varying and unknown properties. A novel feature of the method is the use of a deep meta-learning framework to learn a prior energy model, which can efficiently adapt to the local terrain conditions based on small quantities of exteroceptive and proprioceptive data. A meta-adaptive heuristic function is also proposed for the integration of the energy model into an A* path planner. The performance of the proposed approach is assessed in a 3D-body dynamic simulator over several typologies of deformable terrains and compared with alternative machine learning solutions. We provide evidence of the advantages of the proposed method to adapt to unforeseen terrain conditions, thereby yielding more informed estimations and energy-efficient paths when navigating on unknown terrains. |
doi_str_mv | 10.1109/ACCESS.2022.3155161 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9722866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9722866</ieee_id><doaj_id>oai_doaj_org_article_04ab89791fea464099ab82b94940117b</doaj_id><sourcerecordid>2641994876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-8fe43ec99693562d009c3179f54d61ad3701316f6225bf6378947681de56f0b63</originalsourceid><addsrcrecordid>eNpNUU1P5DAMrRArgVh-AZdInDvESZrUx9EwfEizWiRgbyhKW2foMCRD2hHi39NShNYX289-z5Zelp0BnwFwvJgvFsv7-5ngQswkFAVoOMiOBWjMZSH14X_1UXbadRs-RDlAhTnOni6JduwP9S5fkUuhDWu2DJTWH_n83SVid65_ZndbFwaQ-ZjYY3gdm4Zdp7gPDftHz229pY61YZi9hPge2AOl5NrQ_c5-ebft6PQ7n2SPV8uHxU2--nt9u5iv8lrxss9LT0pSjahRFlo0nGMtwaAvVKPBNdJwkKC9FqKovJamRGV0CQ0V2vNKy5PsdtJtotvYXWpfXfqw0bX2C4hpbV3qxzctV64q0SB4ckorjjj0okKFigOYatA6n7R2Kb7tqevtJu5TGN63QitAVKUZL8ppq06x6xL5n6vA7WiLnWyxoy3225aBdTaxWiL6YaARotRafgLP54Yo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641994876</pqid></control><display><type>article</type><title>Deep Meta-Learning Energy-Aware Path Planner for Unmanned Ground Vehicles in Unknown Terrains</title><source>IEEE Open Access Journals</source><creator>Visca, Marco ; Powell, Roger ; Gao, Yang ; Fallah, Saber</creator><creatorcontrib>Visca, Marco ; Powell, Roger ; Gao, Yang ; Fallah, Saber</creatorcontrib><description>This paper presents an adaptive energy-aware prediction and planning framework for vehicles navigating over terrains with varying and unknown properties. A novel feature of the method is the use of a deep meta-learning framework to learn a prior energy model, which can efficiently adapt to the local terrain conditions based on small quantities of exteroceptive and proprioceptive data. A meta-adaptive heuristic function is also proposed for the integration of the energy model into an A* path planner. The performance of the proposed approach is assessed in a 3D-body dynamic simulator over several typologies of deformable terrains and compared with alternative machine learning solutions. We provide evidence of the advantages of the proposed method to adapt to unforeseen terrain conditions, thereby yielding more informed estimations and energy-efficient paths when navigating on unknown terrains.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3155161</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Deep learning ; driving energy prediction ; Energy consumption ; Energy management ; Formability ; Machine learning ; Mathematical models ; meta-learning ; Neural networks ; Optimization ; path planning ; Planning ; Task analysis ; Terrain ; Unmanned ground vehicles</subject><ispartof>IEEE access, 2022, Vol.10, p.30055-30068</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-8fe43ec99693562d009c3179f54d61ad3701316f6225bf6378947681de56f0b63</citedby><cites>FETCH-LOGICAL-c408t-8fe43ec99693562d009c3179f54d61ad3701316f6225bf6378947681de56f0b63</cites><orcidid>0000-0003-0917-9134 ; 0000-0001-8497-8302 ; 0000-0002-2150-5986 ; 0000-0002-1298-1040</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9722866$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Visca, Marco</creatorcontrib><creatorcontrib>Powell, Roger</creatorcontrib><creatorcontrib>Gao, Yang</creatorcontrib><creatorcontrib>Fallah, Saber</creatorcontrib><title>Deep Meta-Learning Energy-Aware Path Planner for Unmanned Ground Vehicles in Unknown Terrains</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper presents an adaptive energy-aware prediction and planning framework for vehicles navigating over terrains with varying and unknown properties. A novel feature of the method is the use of a deep meta-learning framework to learn a prior energy model, which can efficiently adapt to the local terrain conditions based on small quantities of exteroceptive and proprioceptive data. A meta-adaptive heuristic function is also proposed for the integration of the energy model into an A* path planner. The performance of the proposed approach is assessed in a 3D-body dynamic simulator over several typologies of deformable terrains and compared with alternative machine learning solutions. We provide evidence of the advantages of the proposed method to adapt to unforeseen terrain conditions, thereby yielding more informed estimations and energy-efficient paths when navigating on unknown terrains.</description><subject>Adaptation models</subject><subject>Deep learning</subject><subject>driving energy prediction</subject><subject>Energy consumption</subject><subject>Energy management</subject><subject>Formability</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>meta-learning</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>path planning</subject><subject>Planning</subject><subject>Task analysis</subject><subject>Terrain</subject><subject>Unmanned ground vehicles</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1P5DAMrRArgVh-AZdInDvESZrUx9EwfEizWiRgbyhKW2foMCRD2hHi39NShNYX289-z5Zelp0BnwFwvJgvFsv7-5ngQswkFAVoOMiOBWjMZSH14X_1UXbadRs-RDlAhTnOni6JduwP9S5fkUuhDWu2DJTWH_n83SVid65_ZndbFwaQ-ZjYY3gdm4Zdp7gPDftHz229pY61YZi9hPge2AOl5NrQ_c5-ebft6PQ7n2SPV8uHxU2--nt9u5iv8lrxss9LT0pSjahRFlo0nGMtwaAvVKPBNdJwkKC9FqKovJamRGV0CQ0V2vNKy5PsdtJtotvYXWpfXfqw0bX2C4hpbV3qxzctV64q0SB4ckorjjj0okKFigOYatA6n7R2Kb7tqevtJu5TGN63QitAVKUZL8ppq06x6xL5n6vA7WiLnWyxoy3225aBdTaxWiL6YaARotRafgLP54Yo</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Visca, Marco</creator><creator>Powell, Roger</creator><creator>Gao, Yang</creator><creator>Fallah, Saber</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0917-9134</orcidid><orcidid>https://orcid.org/0000-0001-8497-8302</orcidid><orcidid>https://orcid.org/0000-0002-2150-5986</orcidid><orcidid>https://orcid.org/0000-0002-1298-1040</orcidid></search><sort><creationdate>2022</creationdate><title>Deep Meta-Learning Energy-Aware Path Planner for Unmanned Ground Vehicles in Unknown Terrains</title><author>Visca, Marco ; Powell, Roger ; Gao, Yang ; Fallah, Saber</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-8fe43ec99693562d009c3179f54d61ad3701316f6225bf6378947681de56f0b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation models</topic><topic>Deep learning</topic><topic>driving energy prediction</topic><topic>Energy consumption</topic><topic>Energy management</topic><topic>Formability</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>meta-learning</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>path planning</topic><topic>Planning</topic><topic>Task analysis</topic><topic>Terrain</topic><topic>Unmanned ground vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Visca, Marco</creatorcontrib><creatorcontrib>Powell, Roger</creatorcontrib><creatorcontrib>Gao, Yang</creatorcontrib><creatorcontrib>Fallah, Saber</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Visca, Marco</au><au>Powell, Roger</au><au>Gao, Yang</au><au>Fallah, Saber</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Meta-Learning Energy-Aware Path Planner for Unmanned Ground Vehicles in Unknown Terrains</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>30055</spage><epage>30068</epage><pages>30055-30068</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper presents an adaptive energy-aware prediction and planning framework for vehicles navigating over terrains with varying and unknown properties. A novel feature of the method is the use of a deep meta-learning framework to learn a prior energy model, which can efficiently adapt to the local terrain conditions based on small quantities of exteroceptive and proprioceptive data. A meta-adaptive heuristic function is also proposed for the integration of the energy model into an A* path planner. The performance of the proposed approach is assessed in a 3D-body dynamic simulator over several typologies of deformable terrains and compared with alternative machine learning solutions. We provide evidence of the advantages of the proposed method to adapt to unforeseen terrain conditions, thereby yielding more informed estimations and energy-efficient paths when navigating on unknown terrains.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3155161</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0917-9134</orcidid><orcidid>https://orcid.org/0000-0001-8497-8302</orcidid><orcidid>https://orcid.org/0000-0002-2150-5986</orcidid><orcidid>https://orcid.org/0000-0002-1298-1040</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.30055-30068 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9722866 |
source | IEEE Open Access Journals |
subjects | Adaptation models Deep learning driving energy prediction Energy consumption Energy management Formability Machine learning Mathematical models meta-learning Neural networks Optimization path planning Planning Task analysis Terrain Unmanned ground vehicles |
title | Deep Meta-Learning Energy-Aware Path Planner for Unmanned Ground Vehicles in Unknown Terrains |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A16%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Meta-Learning%20Energy-Aware%20Path%20Planner%20for%20Unmanned%20Ground%20Vehicles%20in%20Unknown%20Terrains&rft.jtitle=IEEE%20access&rft.au=Visca,%20Marco&rft.date=2022&rft.volume=10&rft.spage=30055&rft.epage=30068&rft.pages=30055-30068&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3155161&rft_dat=%3Cproquest_ieee_%3E2641994876%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-8fe43ec99693562d009c3179f54d61ad3701316f6225bf6378947681de56f0b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2641994876&rft_id=info:pmid/&rft_ieee_id=9722866&rfr_iscdi=true |