Loading…

Differential Privacy Preservation in Adaptive K-Nets Clustering

K-Nets is a deterministic clustering algorithm based on the network structure. It can automatically detect the sym-metric structure in the data and can be used to process clusters of different sizes, shapes or a specific number. However, K-Nets has the following shortcomings: (1) the clustering resu...

Full description

Saved in:
Bibliographic Details
Main Authors: Liu, Xiaohong, Cai, Hanbo, Li, De, Li, Xianxian, Wang, Jinyan
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 412
container_issue
container_start_page 405
container_title
container_volume
creator Liu, Xiaohong
Cai, Hanbo
Li, De
Li, Xianxian
Wang, Jinyan
description K-Nets is a deterministic clustering algorithm based on the network structure. It can automatically detect the sym-metric structure in the data and can be used to process clusters of different sizes, shapes or a specific number. However, K-Nets has the following shortcomings: (1) the clustering result is more sensitive to the manually input parameter K, so the accuracy will be affected; (2) the algorithm only considers the average distance of K-nearest neighbors, which may lead to some wrong distribution center points in the dataset with large density difference or the same score values during calculation; (3) it does not consider the privacy leakage during the clustering process. To solve the above problems, we propose a differential privacy protection method in adaptive K-Nets clustering, called ADP-K-Nets. Firstly, for reducing the influence of the parameters on the result, the natural eigenvalues are adaptively obtained through the characteristic of the natural neighbors and used as parameter values to find data points. Then we define a new method for calculating the score, which can solve the problem of incorrectly selecting cluster centers when there are large density differences or conflicts in the calculation process. Also, the Laplace noise is added in calculating the local density of every data point to protect data privacy. Experimental results show that our method ensures the performance of clustering compared with some existing algorithms.
doi_str_mv 10.1109/TrustCom53373.2021.00068
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9724319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9724319</ieee_id><sourcerecordid>9724319</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-40a29611ba1a7694c5849ecd35daeb8a4d95532f072a349ce77bd41e7f70dada3</originalsourceid><addsrcrecordid>eNotjctOwzAQAA0SEqX0C7jkB1J2vXYcn1AVnqICDuVcbeINMkrTygmR-vdUgtNcRjNKZQhLRPC3m_QzjNV-Z4kcLTVoXAJAUZ6pKywKa7CwJZyrmSZtcg9Il2oxDN8nhzQYLO1M3d3HtpUk_Ri5yz5SnLg5niiDpInHuO-z2GerwIcxTpK95m8yDlnVncaSYv91rS5a7gZZ_HOuPh8fNtVzvn5_eqlW6zxqoDE3wNoXiDUju8KbxpbGSxPIBpa6ZBO8taRbcJrJ-Eacq4NBca2DwIFprm7-ulFEtocUd5yOW--0IfT0Cz9ITAQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Differential Privacy Preservation in Adaptive K-Nets Clustering</title><source>IEEE Xplore All Conference Series</source><creator>Liu, Xiaohong ; Cai, Hanbo ; Li, De ; Li, Xianxian ; Wang, Jinyan</creator><creatorcontrib>Liu, Xiaohong ; Cai, Hanbo ; Li, De ; Li, Xianxian ; Wang, Jinyan</creatorcontrib><description>K-Nets is a deterministic clustering algorithm based on the network structure. It can automatically detect the sym-metric structure in the data and can be used to process clusters of different sizes, shapes or a specific number. However, K-Nets has the following shortcomings: (1) the clustering result is more sensitive to the manually input parameter K, so the accuracy will be affected; (2) the algorithm only considers the average distance of K-nearest neighbors, which may lead to some wrong distribution center points in the dataset with large density difference or the same score values during calculation; (3) it does not consider the privacy leakage during the clustering process. To solve the above problems, we propose a differential privacy protection method in adaptive K-Nets clustering, called ADP-K-Nets. Firstly, for reducing the influence of the parameters on the result, the natural eigenvalues are adaptively obtained through the characteristic of the natural neighbors and used as parameter values to find data points. Then we define a new method for calculating the score, which can solve the problem of incorrectly selecting cluster centers when there are large density differences or conflicts in the calculation process. Also, the Laplace noise is added in calculating the local density of every data point to protect data privacy. Experimental results show that our method ensures the performance of clustering compared with some existing algorithms.</description><identifier>EISSN: 2324-9013</identifier><identifier>EISBN: 1665416580</identifier><identifier>EISBN: 9781665416580</identifier><identifier>DOI: 10.1109/TrustCom53373.2021.00068</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering algorithm ; Clustering algorithms ; Conferences ; D-ifferential privacy ; Differential privacy ; Eigenvalues and eigenfunctions ; K-Nets ; Privacy ; Privacy preservation ; Security ; Shape</subject><ispartof>2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), 2021, p.405-412</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9724319$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9724319$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Xiaohong</creatorcontrib><creatorcontrib>Cai, Hanbo</creatorcontrib><creatorcontrib>Li, De</creatorcontrib><creatorcontrib>Li, Xianxian</creatorcontrib><creatorcontrib>Wang, Jinyan</creatorcontrib><title>Differential Privacy Preservation in Adaptive K-Nets Clustering</title><title>2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)</title><addtitle>TRUSTCOM</addtitle><description>K-Nets is a deterministic clustering algorithm based on the network structure. It can automatically detect the sym-metric structure in the data and can be used to process clusters of different sizes, shapes or a specific number. However, K-Nets has the following shortcomings: (1) the clustering result is more sensitive to the manually input parameter K, so the accuracy will be affected; (2) the algorithm only considers the average distance of K-nearest neighbors, which may lead to some wrong distribution center points in the dataset with large density difference or the same score values during calculation; (3) it does not consider the privacy leakage during the clustering process. To solve the above problems, we propose a differential privacy protection method in adaptive K-Nets clustering, called ADP-K-Nets. Firstly, for reducing the influence of the parameters on the result, the natural eigenvalues are adaptively obtained through the characteristic of the natural neighbors and used as parameter values to find data points. Then we define a new method for calculating the score, which can solve the problem of incorrectly selecting cluster centers when there are large density differences or conflicts in the calculation process. Also, the Laplace noise is added in calculating the local density of every data point to protect data privacy. Experimental results show that our method ensures the performance of clustering compared with some existing algorithms.</description><subject>Clustering algorithm</subject><subject>Clustering algorithms</subject><subject>Conferences</subject><subject>D-ifferential privacy</subject><subject>Differential privacy</subject><subject>Eigenvalues and eigenfunctions</subject><subject>K-Nets</subject><subject>Privacy</subject><subject>Privacy preservation</subject><subject>Security</subject><subject>Shape</subject><issn>2324-9013</issn><isbn>1665416580</isbn><isbn>9781665416580</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjctOwzAQAA0SEqX0C7jkB1J2vXYcn1AVnqICDuVcbeINMkrTygmR-vdUgtNcRjNKZQhLRPC3m_QzjNV-Z4kcLTVoXAJAUZ6pKywKa7CwJZyrmSZtcg9Il2oxDN8nhzQYLO1M3d3HtpUk_Ri5yz5SnLg5niiDpInHuO-z2GerwIcxTpK95m8yDlnVncaSYv91rS5a7gZZ_HOuPh8fNtVzvn5_eqlW6zxqoDE3wNoXiDUju8KbxpbGSxPIBpa6ZBO8taRbcJrJ-Eacq4NBca2DwIFprm7-ulFEtocUd5yOW--0IfT0Cz9ITAQ</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Liu, Xiaohong</creator><creator>Cai, Hanbo</creator><creator>Li, De</creator><creator>Li, Xianxian</creator><creator>Wang, Jinyan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202110</creationdate><title>Differential Privacy Preservation in Adaptive K-Nets Clustering</title><author>Liu, Xiaohong ; Cai, Hanbo ; Li, De ; Li, Xianxian ; Wang, Jinyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-40a29611ba1a7694c5849ecd35daeb8a4d95532f072a349ce77bd41e7f70dada3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Clustering algorithm</topic><topic>Clustering algorithms</topic><topic>Conferences</topic><topic>D-ifferential privacy</topic><topic>Differential privacy</topic><topic>Eigenvalues and eigenfunctions</topic><topic>K-Nets</topic><topic>Privacy</topic><topic>Privacy preservation</topic><topic>Security</topic><topic>Shape</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiaohong</creatorcontrib><creatorcontrib>Cai, Hanbo</creatorcontrib><creatorcontrib>Li, De</creatorcontrib><creatorcontrib>Li, Xianxian</creatorcontrib><creatorcontrib>Wang, Jinyan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Xiaohong</au><au>Cai, Hanbo</au><au>Li, De</au><au>Li, Xianxian</au><au>Wang, Jinyan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Differential Privacy Preservation in Adaptive K-Nets Clustering</atitle><btitle>2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)</btitle><stitle>TRUSTCOM</stitle><date>2021-10</date><risdate>2021</risdate><spage>405</spage><epage>412</epage><pages>405-412</pages><eissn>2324-9013</eissn><eisbn>1665416580</eisbn><eisbn>9781665416580</eisbn><coden>IEEPAD</coden><abstract>K-Nets is a deterministic clustering algorithm based on the network structure. It can automatically detect the sym-metric structure in the data and can be used to process clusters of different sizes, shapes or a specific number. However, K-Nets has the following shortcomings: (1) the clustering result is more sensitive to the manually input parameter K, so the accuracy will be affected; (2) the algorithm only considers the average distance of K-nearest neighbors, which may lead to some wrong distribution center points in the dataset with large density difference or the same score values during calculation; (3) it does not consider the privacy leakage during the clustering process. To solve the above problems, we propose a differential privacy protection method in adaptive K-Nets clustering, called ADP-K-Nets. Firstly, for reducing the influence of the parameters on the result, the natural eigenvalues are adaptively obtained through the characteristic of the natural neighbors and used as parameter values to find data points. Then we define a new method for calculating the score, which can solve the problem of incorrectly selecting cluster centers when there are large density differences or conflicts in the calculation process. Also, the Laplace noise is added in calculating the local density of every data point to protect data privacy. Experimental results show that our method ensures the performance of clustering compared with some existing algorithms.</abstract><pub>IEEE</pub><doi>10.1109/TrustCom53373.2021.00068</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2324-9013
ispartof 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), 2021, p.405-412
issn 2324-9013
language eng
recordid cdi_ieee_primary_9724319
source IEEE Xplore All Conference Series
subjects Clustering algorithm
Clustering algorithms
Conferences
D-ifferential privacy
Differential privacy
Eigenvalues and eigenfunctions
K-Nets
Privacy
Privacy preservation
Security
Shape
title Differential Privacy Preservation in Adaptive K-Nets Clustering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A56%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Differential%20Privacy%20Preservation%20in%20Adaptive%20K-Nets%20Clustering&rft.btitle=2021%20IEEE%2020th%20International%20Conference%20on%20Trust,%20Security%20and%20Privacy%20in%20Computing%20and%20Communications%20(TrustCom)&rft.au=Liu,%20Xiaohong&rft.date=2021-10&rft.spage=405&rft.epage=412&rft.pages=405-412&rft.eissn=2324-9013&rft.coden=IEEPAD&rft_id=info:doi/10.1109/TrustCom53373.2021.00068&rft.eisbn=1665416580&rft.eisbn_list=9781665416580&rft_dat=%3Cieee_CHZPO%3E9724319%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-40a29611ba1a7694c5849ecd35daeb8a4d95532f072a349ce77bd41e7f70dada3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9724319&rfr_iscdi=true