Loading…
Differential Privacy Preservation in Adaptive K-Nets Clustering
K-Nets is a deterministic clustering algorithm based on the network structure. It can automatically detect the sym-metric structure in the data and can be used to process clusters of different sizes, shapes or a specific number. However, K-Nets has the following shortcomings: (1) the clustering resu...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 412 |
container_issue | |
container_start_page | 405 |
container_title | |
container_volume | |
creator | Liu, Xiaohong Cai, Hanbo Li, De Li, Xianxian Wang, Jinyan |
description | K-Nets is a deterministic clustering algorithm based on the network structure. It can automatically detect the sym-metric structure in the data and can be used to process clusters of different sizes, shapes or a specific number. However, K-Nets has the following shortcomings: (1) the clustering result is more sensitive to the manually input parameter K, so the accuracy will be affected; (2) the algorithm only considers the average distance of K-nearest neighbors, which may lead to some wrong distribution center points in the dataset with large density difference or the same score values during calculation; (3) it does not consider the privacy leakage during the clustering process. To solve the above problems, we propose a differential privacy protection method in adaptive K-Nets clustering, called ADP-K-Nets. Firstly, for reducing the influence of the parameters on the result, the natural eigenvalues are adaptively obtained through the characteristic of the natural neighbors and used as parameter values to find data points. Then we define a new method for calculating the score, which can solve the problem of incorrectly selecting cluster centers when there are large density differences or conflicts in the calculation process. Also, the Laplace noise is added in calculating the local density of every data point to protect data privacy. Experimental results show that our method ensures the performance of clustering compared with some existing algorithms. |
doi_str_mv | 10.1109/TrustCom53373.2021.00068 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9724319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9724319</ieee_id><sourcerecordid>9724319</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-40a29611ba1a7694c5849ecd35daeb8a4d95532f072a349ce77bd41e7f70dada3</originalsourceid><addsrcrecordid>eNotjctOwzAQAA0SEqX0C7jkB1J2vXYcn1AVnqICDuVcbeINMkrTygmR-vdUgtNcRjNKZQhLRPC3m_QzjNV-Z4kcLTVoXAJAUZ6pKywKa7CwJZyrmSZtcg9Il2oxDN8nhzQYLO1M3d3HtpUk_Ri5yz5SnLg5niiDpInHuO-z2GerwIcxTpK95m8yDlnVncaSYv91rS5a7gZZ_HOuPh8fNtVzvn5_eqlW6zxqoDE3wNoXiDUju8KbxpbGSxPIBpa6ZBO8taRbcJrJ-Eacq4NBca2DwIFprm7-ulFEtocUd5yOW--0IfT0Cz9ITAQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Differential Privacy Preservation in Adaptive K-Nets Clustering</title><source>IEEE Xplore All Conference Series</source><creator>Liu, Xiaohong ; Cai, Hanbo ; Li, De ; Li, Xianxian ; Wang, Jinyan</creator><creatorcontrib>Liu, Xiaohong ; Cai, Hanbo ; Li, De ; Li, Xianxian ; Wang, Jinyan</creatorcontrib><description>K-Nets is a deterministic clustering algorithm based on the network structure. It can automatically detect the sym-metric structure in the data and can be used to process clusters of different sizes, shapes or a specific number. However, K-Nets has the following shortcomings: (1) the clustering result is more sensitive to the manually input parameter K, so the accuracy will be affected; (2) the algorithm only considers the average distance of K-nearest neighbors, which may lead to some wrong distribution center points in the dataset with large density difference or the same score values during calculation; (3) it does not consider the privacy leakage during the clustering process. To solve the above problems, we propose a differential privacy protection method in adaptive K-Nets clustering, called ADP-K-Nets. Firstly, for reducing the influence of the parameters on the result, the natural eigenvalues are adaptively obtained through the characteristic of the natural neighbors and used as parameter values to find data points. Then we define a new method for calculating the score, which can solve the problem of incorrectly selecting cluster centers when there are large density differences or conflicts in the calculation process. Also, the Laplace noise is added in calculating the local density of every data point to protect data privacy. Experimental results show that our method ensures the performance of clustering compared with some existing algorithms.</description><identifier>EISSN: 2324-9013</identifier><identifier>EISBN: 1665416580</identifier><identifier>EISBN: 9781665416580</identifier><identifier>DOI: 10.1109/TrustCom53373.2021.00068</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering algorithm ; Clustering algorithms ; Conferences ; D-ifferential privacy ; Differential privacy ; Eigenvalues and eigenfunctions ; K-Nets ; Privacy ; Privacy preservation ; Security ; Shape</subject><ispartof>2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), 2021, p.405-412</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9724319$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9724319$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Xiaohong</creatorcontrib><creatorcontrib>Cai, Hanbo</creatorcontrib><creatorcontrib>Li, De</creatorcontrib><creatorcontrib>Li, Xianxian</creatorcontrib><creatorcontrib>Wang, Jinyan</creatorcontrib><title>Differential Privacy Preservation in Adaptive K-Nets Clustering</title><title>2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)</title><addtitle>TRUSTCOM</addtitle><description>K-Nets is a deterministic clustering algorithm based on the network structure. It can automatically detect the sym-metric structure in the data and can be used to process clusters of different sizes, shapes or a specific number. However, K-Nets has the following shortcomings: (1) the clustering result is more sensitive to the manually input parameter K, so the accuracy will be affected; (2) the algorithm only considers the average distance of K-nearest neighbors, which may lead to some wrong distribution center points in the dataset with large density difference or the same score values during calculation; (3) it does not consider the privacy leakage during the clustering process. To solve the above problems, we propose a differential privacy protection method in adaptive K-Nets clustering, called ADP-K-Nets. Firstly, for reducing the influence of the parameters on the result, the natural eigenvalues are adaptively obtained through the characteristic of the natural neighbors and used as parameter values to find data points. Then we define a new method for calculating the score, which can solve the problem of incorrectly selecting cluster centers when there are large density differences or conflicts in the calculation process. Also, the Laplace noise is added in calculating the local density of every data point to protect data privacy. Experimental results show that our method ensures the performance of clustering compared with some existing algorithms.</description><subject>Clustering algorithm</subject><subject>Clustering algorithms</subject><subject>Conferences</subject><subject>D-ifferential privacy</subject><subject>Differential privacy</subject><subject>Eigenvalues and eigenfunctions</subject><subject>K-Nets</subject><subject>Privacy</subject><subject>Privacy preservation</subject><subject>Security</subject><subject>Shape</subject><issn>2324-9013</issn><isbn>1665416580</isbn><isbn>9781665416580</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjctOwzAQAA0SEqX0C7jkB1J2vXYcn1AVnqICDuVcbeINMkrTygmR-vdUgtNcRjNKZQhLRPC3m_QzjNV-Z4kcLTVoXAJAUZ6pKywKa7CwJZyrmSZtcg9Il2oxDN8nhzQYLO1M3d3HtpUk_Ri5yz5SnLg5niiDpInHuO-z2GerwIcxTpK95m8yDlnVncaSYv91rS5a7gZZ_HOuPh8fNtVzvn5_eqlW6zxqoDE3wNoXiDUju8KbxpbGSxPIBpa6ZBO8taRbcJrJ-Eacq4NBca2DwIFprm7-ulFEtocUd5yOW--0IfT0Cz9ITAQ</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Liu, Xiaohong</creator><creator>Cai, Hanbo</creator><creator>Li, De</creator><creator>Li, Xianxian</creator><creator>Wang, Jinyan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202110</creationdate><title>Differential Privacy Preservation in Adaptive K-Nets Clustering</title><author>Liu, Xiaohong ; Cai, Hanbo ; Li, De ; Li, Xianxian ; Wang, Jinyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-40a29611ba1a7694c5849ecd35daeb8a4d95532f072a349ce77bd41e7f70dada3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Clustering algorithm</topic><topic>Clustering algorithms</topic><topic>Conferences</topic><topic>D-ifferential privacy</topic><topic>Differential privacy</topic><topic>Eigenvalues and eigenfunctions</topic><topic>K-Nets</topic><topic>Privacy</topic><topic>Privacy preservation</topic><topic>Security</topic><topic>Shape</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiaohong</creatorcontrib><creatorcontrib>Cai, Hanbo</creatorcontrib><creatorcontrib>Li, De</creatorcontrib><creatorcontrib>Li, Xianxian</creatorcontrib><creatorcontrib>Wang, Jinyan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Xiaohong</au><au>Cai, Hanbo</au><au>Li, De</au><au>Li, Xianxian</au><au>Wang, Jinyan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Differential Privacy Preservation in Adaptive K-Nets Clustering</atitle><btitle>2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)</btitle><stitle>TRUSTCOM</stitle><date>2021-10</date><risdate>2021</risdate><spage>405</spage><epage>412</epage><pages>405-412</pages><eissn>2324-9013</eissn><eisbn>1665416580</eisbn><eisbn>9781665416580</eisbn><coden>IEEPAD</coden><abstract>K-Nets is a deterministic clustering algorithm based on the network structure. It can automatically detect the sym-metric structure in the data and can be used to process clusters of different sizes, shapes or a specific number. However, K-Nets has the following shortcomings: (1) the clustering result is more sensitive to the manually input parameter K, so the accuracy will be affected; (2) the algorithm only considers the average distance of K-nearest neighbors, which may lead to some wrong distribution center points in the dataset with large density difference or the same score values during calculation; (3) it does not consider the privacy leakage during the clustering process. To solve the above problems, we propose a differential privacy protection method in adaptive K-Nets clustering, called ADP-K-Nets. Firstly, for reducing the influence of the parameters on the result, the natural eigenvalues are adaptively obtained through the characteristic of the natural neighbors and used as parameter values to find data points. Then we define a new method for calculating the score, which can solve the problem of incorrectly selecting cluster centers when there are large density differences or conflicts in the calculation process. Also, the Laplace noise is added in calculating the local density of every data point to protect data privacy. Experimental results show that our method ensures the performance of clustering compared with some existing algorithms.</abstract><pub>IEEE</pub><doi>10.1109/TrustCom53373.2021.00068</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2324-9013 |
ispartof | 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), 2021, p.405-412 |
issn | 2324-9013 |
language | eng |
recordid | cdi_ieee_primary_9724319 |
source | IEEE Xplore All Conference Series |
subjects | Clustering algorithm Clustering algorithms Conferences D-ifferential privacy Differential privacy Eigenvalues and eigenfunctions K-Nets Privacy Privacy preservation Security Shape |
title | Differential Privacy Preservation in Adaptive K-Nets Clustering |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A56%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Differential%20Privacy%20Preservation%20in%20Adaptive%20K-Nets%20Clustering&rft.btitle=2021%20IEEE%2020th%20International%20Conference%20on%20Trust,%20Security%20and%20Privacy%20in%20Computing%20and%20Communications%20(TrustCom)&rft.au=Liu,%20Xiaohong&rft.date=2021-10&rft.spage=405&rft.epage=412&rft.pages=405-412&rft.eissn=2324-9013&rft.coden=IEEPAD&rft_id=info:doi/10.1109/TrustCom53373.2021.00068&rft.eisbn=1665416580&rft.eisbn_list=9781665416580&rft_dat=%3Cieee_CHZPO%3E9724319%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-40a29611ba1a7694c5849ecd35daeb8a4d95532f072a349ce77bd41e7f70dada3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9724319&rfr_iscdi=true |