Loading…
A 1-Tb 4b/Cell 4-Plane 162-Layer 3D Flash Memory With a 2.4-Gb/s I/O Speed Interface
The presented 1Tb 4b/cell 162 WL layer 3D Flash memory achieves an areal density of 15 Gb/mm 2 which is 8.7% higher than prior work [1]. High-performance is the key enabler for 4b/cell NAND Flash to enter mainstream systems. This work delivers a 60MB/s programming throughput and a 65μs t R with an 8...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c172t-bdb498329bbb0c764e1356ce67690f2a40fb03457b0bc491c2c170fbb550ce2b3 |
---|---|
cites | |
container_end_page | 132 |
container_issue | |
container_start_page | 130 |
container_title | |
container_volume | 65 |
creator | Yuh, Jong Li, Jason Li, Heguang Oyama, Yoshihiro Hsu, Cynthia Anantula, Pradeep Jeong, Stanley Amarnath, Anirudh Darne, Siddhesh Bhatia, Sneha Tang, Tianyu Arya, Aditya Rastogi, Naman Ookuma, Naoki Mizukoshi, Hiroyuki Yap, Alex Wang, Demin Kim, Steve Wu, Yonggang Peng, Min Lu, Jason Ip, Tommy Malhotra, Seema Han, David Okumura, Masatoshi Liu, Jiwen Sohn, John Chibvongodze, Hardwell Balaga, Muralikrishna Matsuda, Aki Puri, Chakshu Chen, Chen V, Indra K G, Chaitanya Ramachandra, Venky Kato, Yosuke Kumar, Ravi Wang, Huijuan Moogat, Farookh Yoon, In-Soo Kanda, Kazushige Shimizu, Takahiro Shibata, Noboru Shigeoka, Takashi Yanagidaira, Kosuke Kodama, Takuyo Fukuda, Ryo Hirashima, Yasuhiro Abe, Mitsuhiro |
description | The presented 1Tb 4b/cell 162 WL layer 3D Flash memory achieves an areal density of 15 Gb/mm 2 which is 8.7% higher than prior work [1]. High-performance is the key enabler for 4b/cell NAND Flash to enter mainstream systems. This work delivers a 60MB/s programming throughput and a 65μs t R with an 8kB central WL stair architecture and contact-through-WL (CTW) region. 2.4Gb/s I/O speed is achieved with LTT and CTT combo drivers. A 45% reduction in the read and write data transfer energy is achieved by employing V CCQ domain design. A time-division peak-power-management (TD-PPM) feature effectively reduces system peak power while maximizing system performance. Cache DFT and I/O DFT functions enable a high-speed testing methodology at wafer level. These features are summarized and compared to previously reported 4b/cell Flash memories in Fig. 7.1.1. |
doi_str_mv | 10.1109/ISSCC42614.2022.9731110 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9731110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9731110</ieee_id><sourcerecordid>9731110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c172t-bdb498329bbb0c764e1356ce67690f2a40fb03457b0bc491c2c170fbb550ce2b3</originalsourceid><addsrcrecordid>eNotkMFqAjEURdNCodb6BV30_UBmXl4yyWQp02oHpljQ0qUk8Q1aRiszbvz7Crq6cA_3LK4QrwozpdDn9XJZVYasMhkhUeadVhdwJybelcrawlCJSPdiRNpZWVq0j-JpGH4RsfC2HInVFJRcRTAxr7jrwMivLhwYlCXZhDP3oN9g1oVhC5-8_-vP8LM7bSEAZUbOYz5AnS9geWTeQH04cd-GxM_ioQ3dwJNbjsX37H1VfchmMa-raSOTcnSScRONLzX5GCMmZw0rXdjE1lmPLQWDbURtChcxJuNVosvu0sWiwMQU9Vi8XL07Zl4f-90-9Of17QT9DzTtTFk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A 1-Tb 4b/Cell 4-Plane 162-Layer 3D Flash Memory With a 2.4-Gb/s I/O Speed Interface</title><source>IEEE Xplore All Conference Series</source><creator>Yuh, Jong ; Li, Jason ; Li, Heguang ; Oyama, Yoshihiro ; Hsu, Cynthia ; Anantula, Pradeep ; Jeong, Stanley ; Amarnath, Anirudh ; Darne, Siddhesh ; Bhatia, Sneha ; Tang, Tianyu ; Arya, Aditya ; Rastogi, Naman ; Ookuma, Naoki ; Mizukoshi, Hiroyuki ; Yap, Alex ; Wang, Demin ; Kim, Steve ; Wu, Yonggang ; Peng, Min ; Lu, Jason ; Ip, Tommy ; Malhotra, Seema ; Han, David ; Okumura, Masatoshi ; Liu, Jiwen ; Sohn, John ; Chibvongodze, Hardwell ; Balaga, Muralikrishna ; Matsuda, Aki ; Puri, Chakshu ; Chen, Chen ; V, Indra K ; G, Chaitanya ; Ramachandra, Venky ; Kato, Yosuke ; Kumar, Ravi ; Wang, Huijuan ; Moogat, Farookh ; Yoon, In-Soo ; Kanda, Kazushige ; Shimizu, Takahiro ; Shibata, Noboru ; Shigeoka, Takashi ; Yanagidaira, Kosuke ; Kodama, Takuyo ; Fukuda, Ryo ; Hirashima, Yasuhiro ; Abe, Mitsuhiro</creator><creatorcontrib>Yuh, Jong ; Li, Jason ; Li, Heguang ; Oyama, Yoshihiro ; Hsu, Cynthia ; Anantula, Pradeep ; Jeong, Stanley ; Amarnath, Anirudh ; Darne, Siddhesh ; Bhatia, Sneha ; Tang, Tianyu ; Arya, Aditya ; Rastogi, Naman ; Ookuma, Naoki ; Mizukoshi, Hiroyuki ; Yap, Alex ; Wang, Demin ; Kim, Steve ; Wu, Yonggang ; Peng, Min ; Lu, Jason ; Ip, Tommy ; Malhotra, Seema ; Han, David ; Okumura, Masatoshi ; Liu, Jiwen ; Sohn, John ; Chibvongodze, Hardwell ; Balaga, Muralikrishna ; Matsuda, Aki ; Puri, Chakshu ; Chen, Chen ; V, Indra K ; G, Chaitanya ; Ramachandra, Venky ; Kato, Yosuke ; Kumar, Ravi ; Wang, Huijuan ; Moogat, Farookh ; Yoon, In-Soo ; Kanda, Kazushige ; Shimizu, Takahiro ; Shibata, Noboru ; Shigeoka, Takashi ; Yanagidaira, Kosuke ; Kodama, Takuyo ; Fukuda, Ryo ; Hirashima, Yasuhiro ; Abe, Mitsuhiro</creatorcontrib><description>The presented 1Tb 4b/cell 162 WL layer 3D Flash memory achieves an areal density of 15 Gb/mm 2 which is 8.7% higher than prior work [1]. High-performance is the key enabler for 4b/cell NAND Flash to enter mainstream systems. This work delivers a 60MB/s programming throughput and a 65μs t R with an 8kB central WL stair architecture and contact-through-WL (CTW) region. 2.4Gb/s I/O speed is achieved with LTT and CTT combo drivers. A 45% reduction in the read and write data transfer energy is achieved by employing V CCQ domain design. A time-division peak-power-management (TD-PPM) feature effectively reduces system peak power while maximizing system performance. Cache DFT and I/O DFT functions enable a high-speed testing methodology at wafer level. These features are summarized and compared to previously reported 4b/cell Flash memories in Fig. 7.1.1.</description><identifier>EISSN: 2376-8606</identifier><identifier>EISBN: 9781665428002</identifier><identifier>EISBN: 1665428007</identifier><identifier>DOI: 10.1109/ISSCC42614.2022.9731110</identifier><language>eng</language><publisher>IEEE</publisher><subject>Conferences ; Discrete Fourier transforms ; Programming ; Stairs ; System performance ; Three-dimensional displays ; Throughput</subject><ispartof>2022 IEEE International Solid- State Circuits Conference (ISSCC), 2022, Vol.65, p.130-132</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c172t-bdb498329bbb0c764e1356ce67690f2a40fb03457b0bc491c2c170fbb550ce2b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9731110$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9731110$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yuh, Jong</creatorcontrib><creatorcontrib>Li, Jason</creatorcontrib><creatorcontrib>Li, Heguang</creatorcontrib><creatorcontrib>Oyama, Yoshihiro</creatorcontrib><creatorcontrib>Hsu, Cynthia</creatorcontrib><creatorcontrib>Anantula, Pradeep</creatorcontrib><creatorcontrib>Jeong, Stanley</creatorcontrib><creatorcontrib>Amarnath, Anirudh</creatorcontrib><creatorcontrib>Darne, Siddhesh</creatorcontrib><creatorcontrib>Bhatia, Sneha</creatorcontrib><creatorcontrib>Tang, Tianyu</creatorcontrib><creatorcontrib>Arya, Aditya</creatorcontrib><creatorcontrib>Rastogi, Naman</creatorcontrib><creatorcontrib>Ookuma, Naoki</creatorcontrib><creatorcontrib>Mizukoshi, Hiroyuki</creatorcontrib><creatorcontrib>Yap, Alex</creatorcontrib><creatorcontrib>Wang, Demin</creatorcontrib><creatorcontrib>Kim, Steve</creatorcontrib><creatorcontrib>Wu, Yonggang</creatorcontrib><creatorcontrib>Peng, Min</creatorcontrib><creatorcontrib>Lu, Jason</creatorcontrib><creatorcontrib>Ip, Tommy</creatorcontrib><creatorcontrib>Malhotra, Seema</creatorcontrib><creatorcontrib>Han, David</creatorcontrib><creatorcontrib>Okumura, Masatoshi</creatorcontrib><creatorcontrib>Liu, Jiwen</creatorcontrib><creatorcontrib>Sohn, John</creatorcontrib><creatorcontrib>Chibvongodze, Hardwell</creatorcontrib><creatorcontrib>Balaga, Muralikrishna</creatorcontrib><creatorcontrib>Matsuda, Aki</creatorcontrib><creatorcontrib>Puri, Chakshu</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>V, Indra K</creatorcontrib><creatorcontrib>G, Chaitanya</creatorcontrib><creatorcontrib>Ramachandra, Venky</creatorcontrib><creatorcontrib>Kato, Yosuke</creatorcontrib><creatorcontrib>Kumar, Ravi</creatorcontrib><creatorcontrib>Wang, Huijuan</creatorcontrib><creatorcontrib>Moogat, Farookh</creatorcontrib><creatorcontrib>Yoon, In-Soo</creatorcontrib><creatorcontrib>Kanda, Kazushige</creatorcontrib><creatorcontrib>Shimizu, Takahiro</creatorcontrib><creatorcontrib>Shibata, Noboru</creatorcontrib><creatorcontrib>Shigeoka, Takashi</creatorcontrib><creatorcontrib>Yanagidaira, Kosuke</creatorcontrib><creatorcontrib>Kodama, Takuyo</creatorcontrib><creatorcontrib>Fukuda, Ryo</creatorcontrib><creatorcontrib>Hirashima, Yasuhiro</creatorcontrib><creatorcontrib>Abe, Mitsuhiro</creatorcontrib><title>A 1-Tb 4b/Cell 4-Plane 162-Layer 3D Flash Memory With a 2.4-Gb/s I/O Speed Interface</title><title>2022 IEEE International Solid- State Circuits Conference (ISSCC)</title><addtitle>ISSCC</addtitle><description>The presented 1Tb 4b/cell 162 WL layer 3D Flash memory achieves an areal density of 15 Gb/mm 2 which is 8.7% higher than prior work [1]. High-performance is the key enabler for 4b/cell NAND Flash to enter mainstream systems. This work delivers a 60MB/s programming throughput and a 65μs t R with an 8kB central WL stair architecture and contact-through-WL (CTW) region. 2.4Gb/s I/O speed is achieved with LTT and CTT combo drivers. A 45% reduction in the read and write data transfer energy is achieved by employing V CCQ domain design. A time-division peak-power-management (TD-PPM) feature effectively reduces system peak power while maximizing system performance. Cache DFT and I/O DFT functions enable a high-speed testing methodology at wafer level. These features are summarized and compared to previously reported 4b/cell Flash memories in Fig. 7.1.1.</description><subject>Conferences</subject><subject>Discrete Fourier transforms</subject><subject>Programming</subject><subject>Stairs</subject><subject>System performance</subject><subject>Three-dimensional displays</subject><subject>Throughput</subject><issn>2376-8606</issn><isbn>9781665428002</isbn><isbn>1665428007</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMFqAjEURdNCodb6BV30_UBmXl4yyWQp02oHpljQ0qUk8Q1aRiszbvz7Crq6cA_3LK4QrwozpdDn9XJZVYasMhkhUeadVhdwJybelcrawlCJSPdiRNpZWVq0j-JpGH4RsfC2HInVFJRcRTAxr7jrwMivLhwYlCXZhDP3oN9g1oVhC5-8_-vP8LM7bSEAZUbOYz5AnS9geWTeQH04cd-GxM_ioQ3dwJNbjsX37H1VfchmMa-raSOTcnSScRONLzX5GCMmZw0rXdjE1lmPLQWDbURtChcxJuNVosvu0sWiwMQU9Vi8XL07Zl4f-90-9Of17QT9DzTtTFk</recordid><startdate>20220220</startdate><enddate>20220220</enddate><creator>Yuh, Jong</creator><creator>Li, Jason</creator><creator>Li, Heguang</creator><creator>Oyama, Yoshihiro</creator><creator>Hsu, Cynthia</creator><creator>Anantula, Pradeep</creator><creator>Jeong, Stanley</creator><creator>Amarnath, Anirudh</creator><creator>Darne, Siddhesh</creator><creator>Bhatia, Sneha</creator><creator>Tang, Tianyu</creator><creator>Arya, Aditya</creator><creator>Rastogi, Naman</creator><creator>Ookuma, Naoki</creator><creator>Mizukoshi, Hiroyuki</creator><creator>Yap, Alex</creator><creator>Wang, Demin</creator><creator>Kim, Steve</creator><creator>Wu, Yonggang</creator><creator>Peng, Min</creator><creator>Lu, Jason</creator><creator>Ip, Tommy</creator><creator>Malhotra, Seema</creator><creator>Han, David</creator><creator>Okumura, Masatoshi</creator><creator>Liu, Jiwen</creator><creator>Sohn, John</creator><creator>Chibvongodze, Hardwell</creator><creator>Balaga, Muralikrishna</creator><creator>Matsuda, Aki</creator><creator>Puri, Chakshu</creator><creator>Chen, Chen</creator><creator>V, Indra K</creator><creator>G, Chaitanya</creator><creator>Ramachandra, Venky</creator><creator>Kato, Yosuke</creator><creator>Kumar, Ravi</creator><creator>Wang, Huijuan</creator><creator>Moogat, Farookh</creator><creator>Yoon, In-Soo</creator><creator>Kanda, Kazushige</creator><creator>Shimizu, Takahiro</creator><creator>Shibata, Noboru</creator><creator>Shigeoka, Takashi</creator><creator>Yanagidaira, Kosuke</creator><creator>Kodama, Takuyo</creator><creator>Fukuda, Ryo</creator><creator>Hirashima, Yasuhiro</creator><creator>Abe, Mitsuhiro</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20220220</creationdate><title>A 1-Tb 4b/Cell 4-Plane 162-Layer 3D Flash Memory With a 2.4-Gb/s I/O Speed Interface</title><author>Yuh, Jong ; Li, Jason ; Li, Heguang ; Oyama, Yoshihiro ; Hsu, Cynthia ; Anantula, Pradeep ; Jeong, Stanley ; Amarnath, Anirudh ; Darne, Siddhesh ; Bhatia, Sneha ; Tang, Tianyu ; Arya, Aditya ; Rastogi, Naman ; Ookuma, Naoki ; Mizukoshi, Hiroyuki ; Yap, Alex ; Wang, Demin ; Kim, Steve ; Wu, Yonggang ; Peng, Min ; Lu, Jason ; Ip, Tommy ; Malhotra, Seema ; Han, David ; Okumura, Masatoshi ; Liu, Jiwen ; Sohn, John ; Chibvongodze, Hardwell ; Balaga, Muralikrishna ; Matsuda, Aki ; Puri, Chakshu ; Chen, Chen ; V, Indra K ; G, Chaitanya ; Ramachandra, Venky ; Kato, Yosuke ; Kumar, Ravi ; Wang, Huijuan ; Moogat, Farookh ; Yoon, In-Soo ; Kanda, Kazushige ; Shimizu, Takahiro ; Shibata, Noboru ; Shigeoka, Takashi ; Yanagidaira, Kosuke ; Kodama, Takuyo ; Fukuda, Ryo ; Hirashima, Yasuhiro ; Abe, Mitsuhiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c172t-bdb498329bbb0c764e1356ce67690f2a40fb03457b0bc491c2c170fbb550ce2b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Conferences</topic><topic>Discrete Fourier transforms</topic><topic>Programming</topic><topic>Stairs</topic><topic>System performance</topic><topic>Three-dimensional displays</topic><topic>Throughput</topic><toplevel>online_resources</toplevel><creatorcontrib>Yuh, Jong</creatorcontrib><creatorcontrib>Li, Jason</creatorcontrib><creatorcontrib>Li, Heguang</creatorcontrib><creatorcontrib>Oyama, Yoshihiro</creatorcontrib><creatorcontrib>Hsu, Cynthia</creatorcontrib><creatorcontrib>Anantula, Pradeep</creatorcontrib><creatorcontrib>Jeong, Stanley</creatorcontrib><creatorcontrib>Amarnath, Anirudh</creatorcontrib><creatorcontrib>Darne, Siddhesh</creatorcontrib><creatorcontrib>Bhatia, Sneha</creatorcontrib><creatorcontrib>Tang, Tianyu</creatorcontrib><creatorcontrib>Arya, Aditya</creatorcontrib><creatorcontrib>Rastogi, Naman</creatorcontrib><creatorcontrib>Ookuma, Naoki</creatorcontrib><creatorcontrib>Mizukoshi, Hiroyuki</creatorcontrib><creatorcontrib>Yap, Alex</creatorcontrib><creatorcontrib>Wang, Demin</creatorcontrib><creatorcontrib>Kim, Steve</creatorcontrib><creatorcontrib>Wu, Yonggang</creatorcontrib><creatorcontrib>Peng, Min</creatorcontrib><creatorcontrib>Lu, Jason</creatorcontrib><creatorcontrib>Ip, Tommy</creatorcontrib><creatorcontrib>Malhotra, Seema</creatorcontrib><creatorcontrib>Han, David</creatorcontrib><creatorcontrib>Okumura, Masatoshi</creatorcontrib><creatorcontrib>Liu, Jiwen</creatorcontrib><creatorcontrib>Sohn, John</creatorcontrib><creatorcontrib>Chibvongodze, Hardwell</creatorcontrib><creatorcontrib>Balaga, Muralikrishna</creatorcontrib><creatorcontrib>Matsuda, Aki</creatorcontrib><creatorcontrib>Puri, Chakshu</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>V, Indra K</creatorcontrib><creatorcontrib>G, Chaitanya</creatorcontrib><creatorcontrib>Ramachandra, Venky</creatorcontrib><creatorcontrib>Kato, Yosuke</creatorcontrib><creatorcontrib>Kumar, Ravi</creatorcontrib><creatorcontrib>Wang, Huijuan</creatorcontrib><creatorcontrib>Moogat, Farookh</creatorcontrib><creatorcontrib>Yoon, In-Soo</creatorcontrib><creatorcontrib>Kanda, Kazushige</creatorcontrib><creatorcontrib>Shimizu, Takahiro</creatorcontrib><creatorcontrib>Shibata, Noboru</creatorcontrib><creatorcontrib>Shigeoka, Takashi</creatorcontrib><creatorcontrib>Yanagidaira, Kosuke</creatorcontrib><creatorcontrib>Kodama, Takuyo</creatorcontrib><creatorcontrib>Fukuda, Ryo</creatorcontrib><creatorcontrib>Hirashima, Yasuhiro</creatorcontrib><creatorcontrib>Abe, Mitsuhiro</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yuh, Jong</au><au>Li, Jason</au><au>Li, Heguang</au><au>Oyama, Yoshihiro</au><au>Hsu, Cynthia</au><au>Anantula, Pradeep</au><au>Jeong, Stanley</au><au>Amarnath, Anirudh</au><au>Darne, Siddhesh</au><au>Bhatia, Sneha</au><au>Tang, Tianyu</au><au>Arya, Aditya</au><au>Rastogi, Naman</au><au>Ookuma, Naoki</au><au>Mizukoshi, Hiroyuki</au><au>Yap, Alex</au><au>Wang, Demin</au><au>Kim, Steve</au><au>Wu, Yonggang</au><au>Peng, Min</au><au>Lu, Jason</au><au>Ip, Tommy</au><au>Malhotra, Seema</au><au>Han, David</au><au>Okumura, Masatoshi</au><au>Liu, Jiwen</au><au>Sohn, John</au><au>Chibvongodze, Hardwell</au><au>Balaga, Muralikrishna</au><au>Matsuda, Aki</au><au>Puri, Chakshu</au><au>Chen, Chen</au><au>V, Indra K</au><au>G, Chaitanya</au><au>Ramachandra, Venky</au><au>Kato, Yosuke</au><au>Kumar, Ravi</au><au>Wang, Huijuan</au><au>Moogat, Farookh</au><au>Yoon, In-Soo</au><au>Kanda, Kazushige</au><au>Shimizu, Takahiro</au><au>Shibata, Noboru</au><au>Shigeoka, Takashi</au><au>Yanagidaira, Kosuke</au><au>Kodama, Takuyo</au><au>Fukuda, Ryo</au><au>Hirashima, Yasuhiro</au><au>Abe, Mitsuhiro</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A 1-Tb 4b/Cell 4-Plane 162-Layer 3D Flash Memory With a 2.4-Gb/s I/O Speed Interface</atitle><btitle>2022 IEEE International Solid- State Circuits Conference (ISSCC)</btitle><stitle>ISSCC</stitle><date>2022-02-20</date><risdate>2022</risdate><volume>65</volume><spage>130</spage><epage>132</epage><pages>130-132</pages><eissn>2376-8606</eissn><eisbn>9781665428002</eisbn><eisbn>1665428007</eisbn><abstract>The presented 1Tb 4b/cell 162 WL layer 3D Flash memory achieves an areal density of 15 Gb/mm 2 which is 8.7% higher than prior work [1]. High-performance is the key enabler for 4b/cell NAND Flash to enter mainstream systems. This work delivers a 60MB/s programming throughput and a 65μs t R with an 8kB central WL stair architecture and contact-through-WL (CTW) region. 2.4Gb/s I/O speed is achieved with LTT and CTT combo drivers. A 45% reduction in the read and write data transfer energy is achieved by employing V CCQ domain design. A time-division peak-power-management (TD-PPM) feature effectively reduces system peak power while maximizing system performance. Cache DFT and I/O DFT functions enable a high-speed testing methodology at wafer level. These features are summarized and compared to previously reported 4b/cell Flash memories in Fig. 7.1.1.</abstract><pub>IEEE</pub><doi>10.1109/ISSCC42614.2022.9731110</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2376-8606 |
ispartof | 2022 IEEE International Solid- State Circuits Conference (ISSCC), 2022, Vol.65, p.130-132 |
issn | 2376-8606 |
language | eng |
recordid | cdi_ieee_primary_9731110 |
source | IEEE Xplore All Conference Series |
subjects | Conferences Discrete Fourier transforms Programming Stairs System performance Three-dimensional displays Throughput |
title | A 1-Tb 4b/Cell 4-Plane 162-Layer 3D Flash Memory With a 2.4-Gb/s I/O Speed Interface |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A55%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%201-Tb%204b/Cell%204-Plane%20162-Layer%203D%20Flash%20Memory%20With%20a%202.4-Gb/s%20I/O%20Speed%20Interface&rft.btitle=2022%20IEEE%20International%20Solid-%20State%20Circuits%20Conference%20(ISSCC)&rft.au=Yuh,%20Jong&rft.date=2022-02-20&rft.volume=65&rft.spage=130&rft.epage=132&rft.pages=130-132&rft.eissn=2376-8606&rft_id=info:doi/10.1109/ISSCC42614.2022.9731110&rft.eisbn=9781665428002&rft.eisbn_list=1665428007&rft_dat=%3Cieee_CHZPO%3E9731110%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c172t-bdb498329bbb0c764e1356ce67690f2a40fb03457b0bc491c2c170fbb550ce2b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9731110&rfr_iscdi=true |