Loading…

Electronic THz Pencil Beam Forming and 2D Steering for High Angular-Resolution Operation: A 98 \times 98-Unit 265GHz CMOS Reflectarray with In-Unit Digital Beam Shaping and Squint Correction

Ultra-sharp beam forming and high-angular-resolution steering in both azimuth and elevation directions are required in high-performance imaging sensors, spatial-multiplexed wireless links and other applications. This poses great challenges due to the fundamental relationship between the beamwidth an...

Full description

Saved in:
Bibliographic Details
Main Authors: Monroe, Nathan M., Dogiamis, Georgios C., Stingel, Robert, Myers, Preston, Chen, Xibi, Han, Ruonan
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3
container_issue
container_start_page 1
container_title
container_volume 65
creator Monroe, Nathan M.
Dogiamis, Georgios C.
Stingel, Robert
Myers, Preston
Chen, Xibi
Han, Ruonan
description Ultra-sharp beam forming and high-angular-resolution steering in both azimuth and elevation directions are required in high-performance imaging sensors, spatial-multiplexed wireless links and other applications. This poses great challenges due to the fundamental relationship between the beamwidth and the dimension of the antenna aperture. As shown in Fig. 4.5.1, the aperture size required to achieve 1 ° of 3dB beamwidth is 0.6\times 0.6\mathrm{m}^{2} and 0.2\times 0.2\mathrm{m}^{2} at 24GHz and 77GHz, respectively. In current radars, sparse MIMO antenna schemes are adopted to synthesize virtual arrays with the above size in one dimension. However, they require intensive signal processing of many channels. The complex signal routing and placement of active electronics also leads to challenges in the 2D scaling required for pencil beam forming. By increasing the wave frequency to 265GHz, the work in this paper significantly reduces the aperture area, allowing it to be fully realized by digitally controlled, reflective antennas in CMOS microelectronic chips (Fig. 4.5.1). Similar to a concave mirror, a reflectarray, when illuminated by a single radar source, applies incident-angle-dependent phase shifts (e.g. \varphi_{1} and \varphi_{2} in Fig. 4.5.1) to the wave and re-focuses it towards a desired direction. This quasi-optical spatial feed eliminates the high-frequency signal routing and complex processing inherent to MIMO arrays. Employing 98\times 98 antenna elements, we experimentally demonstrate the forming and electronic steering of a THz pencil beam with- 1 ° beamwidth in two dimensions. With under-antenna integration of dense memory cells, sidelobe reduction and squint correction are also achieved.
doi_str_mv 10.1109/ISSCC42614.2022.9731671
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9731671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9731671</ieee_id><sourcerecordid>9731671</sourcerecordid><originalsourceid>FETCH-LOGICAL-i481-6f610babd1ddae6c8afd87abaebc36feae51374e8e4c454dc40d2c462c99e3673</originalsourceid><addsrcrecordid>eNo1kN1OwkAQhVcTExF5Ai-cFyjubrfbrXdYfhMMhuKdCVm2U1hTtrgtMfhwPpsQ8GrOSWbOdzKEPDLaZYwmT5MsS1PBJRNdTjnvJnHIZMyuSCeJFZMyElxRyq9Ji4exDJSk8pbc1fUnpTRKpGqR30GJpvGVswYW4x94Q2dsCS-otzCs_Na6NWiXA-9D1iD6ky8qD2O73kDPrfel9sEc66rcN7ZyMNuh1yf1DD1IFHw0dov1UQXvzjbAZTQ6UtLXWQZzLE5s7b0-wLdtNjBx562-XdtGX1pkG737b5F97a1rIK28P14eKffkptBljZ3LbJPFcLBIx8F0NpqkvWlghWKBLCSjK73KWZ5rlEbpIlexXmlcmVAWqDFiYSxQoTAiErkRNOdGSG6SBEMZh23ycI61iLjcebvV_rC8fDv8A12-dlY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Electronic THz Pencil Beam Forming and 2D Steering for High Angular-Resolution Operation: A 98 \times 98-Unit 265GHz CMOS Reflectarray with In-Unit Digital Beam Shaping and Squint Correction</title><source>IEEE Xplore All Conference Series</source><creator>Monroe, Nathan M. ; Dogiamis, Georgios C. ; Stingel, Robert ; Myers, Preston ; Chen, Xibi ; Han, Ruonan</creator><creatorcontrib>Monroe, Nathan M. ; Dogiamis, Georgios C. ; Stingel, Robert ; Myers, Preston ; Chen, Xibi ; Han, Ruonan</creatorcontrib><description>Ultra-sharp beam forming and high-angular-resolution steering in both azimuth and elevation directions are required in high-performance imaging sensors, spatial-multiplexed wireless links and other applications. This poses great challenges due to the fundamental relationship between the beamwidth and the dimension of the antenna aperture. As shown in Fig. 4.5.1, the aperture size required to achieve 1 ° of 3dB beamwidth is 0.6\times 0.6\mathrm{m}^{2} and 0.2\times 0.2\mathrm{m}^{2} at 24GHz and 77GHz, respectively. In current radars, sparse MIMO antenna schemes are adopted to synthesize virtual arrays with the above size in one dimension. However, they require intensive signal processing of many channels. The complex signal routing and placement of active electronics also leads to challenges in the 2D scaling required for pencil beam forming. By increasing the wave frequency to 265GHz, the work in this paper significantly reduces the aperture area, allowing it to be fully realized by digitally controlled, reflective antennas in CMOS microelectronic chips (Fig. 4.5.1). Similar to a concave mirror, a reflectarray, when illuminated by a single radar source, applies incident-angle-dependent phase shifts (e.g. \varphi_{1} and \varphi_{2} in Fig. 4.5.1) to the wave and re-focuses it towards a desired direction. This quasi-optical spatial feed eliminates the high-frequency signal routing and complex processing inherent to MIMO arrays. Employing 98\times 98 antenna elements, we experimentally demonstrate the forming and electronic steering of a THz pencil beam with- 1 ° beamwidth in two dimensions. With under-antenna integration of dense memory cells, sidelobe reduction and squint correction are also achieved.</description><identifier>EISSN: 2376-8606</identifier><identifier>EISBN: 9781665428002</identifier><identifier>EISBN: 1665428007</identifier><identifier>DOI: 10.1109/ISSCC42614.2022.9731671</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aperture antennas ; Array signal processing ; Radar ; Radar antennas ; Routing ; Wireless communication ; Wireless sensor networks</subject><ispartof>2022 IEEE International Solid- State Circuits Conference (ISSCC), 2022, Vol.65, p.1-3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9731671$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9731671$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Monroe, Nathan M.</creatorcontrib><creatorcontrib>Dogiamis, Georgios C.</creatorcontrib><creatorcontrib>Stingel, Robert</creatorcontrib><creatorcontrib>Myers, Preston</creatorcontrib><creatorcontrib>Chen, Xibi</creatorcontrib><creatorcontrib>Han, Ruonan</creatorcontrib><title>Electronic THz Pencil Beam Forming and 2D Steering for High Angular-Resolution Operation: A 98 \times 98-Unit 265GHz CMOS Reflectarray with In-Unit Digital Beam Shaping and Squint Correction</title><title>2022 IEEE International Solid- State Circuits Conference (ISSCC)</title><addtitle>ISSCC</addtitle><description>Ultra-sharp beam forming and high-angular-resolution steering in both azimuth and elevation directions are required in high-performance imaging sensors, spatial-multiplexed wireless links and other applications. This poses great challenges due to the fundamental relationship between the beamwidth and the dimension of the antenna aperture. As shown in Fig. 4.5.1, the aperture size required to achieve 1 ° of 3dB beamwidth is 0.6\times 0.6\mathrm{m}^{2} and 0.2\times 0.2\mathrm{m}^{2} at 24GHz and 77GHz, respectively. In current radars, sparse MIMO antenna schemes are adopted to synthesize virtual arrays with the above size in one dimension. However, they require intensive signal processing of many channels. The complex signal routing and placement of active electronics also leads to challenges in the 2D scaling required for pencil beam forming. By increasing the wave frequency to 265GHz, the work in this paper significantly reduces the aperture area, allowing it to be fully realized by digitally controlled, reflective antennas in CMOS microelectronic chips (Fig. 4.5.1). Similar to a concave mirror, a reflectarray, when illuminated by a single radar source, applies incident-angle-dependent phase shifts (e.g. \varphi_{1} and \varphi_{2} in Fig. 4.5.1) to the wave and re-focuses it towards a desired direction. This quasi-optical spatial feed eliminates the high-frequency signal routing and complex processing inherent to MIMO arrays. Employing 98\times 98 antenna elements, we experimentally demonstrate the forming and electronic steering of a THz pencil beam with- 1 ° beamwidth in two dimensions. With under-antenna integration of dense memory cells, sidelobe reduction and squint correction are also achieved.</description><subject>Aperture antennas</subject><subject>Array signal processing</subject><subject>Radar</subject><subject>Radar antennas</subject><subject>Routing</subject><subject>Wireless communication</subject><subject>Wireless sensor networks</subject><issn>2376-8606</issn><isbn>9781665428002</isbn><isbn>1665428007</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kN1OwkAQhVcTExF5Ai-cFyjubrfbrXdYfhMMhuKdCVm2U1hTtrgtMfhwPpsQ8GrOSWbOdzKEPDLaZYwmT5MsS1PBJRNdTjnvJnHIZMyuSCeJFZMyElxRyq9Ji4exDJSk8pbc1fUnpTRKpGqR30GJpvGVswYW4x94Q2dsCS-otzCs_Na6NWiXA-9D1iD6ky8qD2O73kDPrfel9sEc66rcN7ZyMNuh1yf1DD1IFHw0dov1UQXvzjbAZTQ6UtLXWQZzLE5s7b0-wLdtNjBx562-XdtGX1pkG737b5F97a1rIK28P14eKffkptBljZ3LbJPFcLBIx8F0NpqkvWlghWKBLCSjK73KWZ5rlEbpIlexXmlcmVAWqDFiYSxQoTAiErkRNOdGSG6SBEMZh23ycI61iLjcebvV_rC8fDv8A12-dlY</recordid><startdate>20220220</startdate><enddate>20220220</enddate><creator>Monroe, Nathan M.</creator><creator>Dogiamis, Georgios C.</creator><creator>Stingel, Robert</creator><creator>Myers, Preston</creator><creator>Chen, Xibi</creator><creator>Han, Ruonan</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20220220</creationdate><title>Electronic THz Pencil Beam Forming and 2D Steering for High Angular-Resolution Operation: A 98 \times 98-Unit 265GHz CMOS Reflectarray with In-Unit Digital Beam Shaping and Squint Correction</title><author>Monroe, Nathan M. ; Dogiamis, Georgios C. ; Stingel, Robert ; Myers, Preston ; Chen, Xibi ; Han, Ruonan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i481-6f610babd1ddae6c8afd87abaebc36feae51374e8e4c454dc40d2c462c99e3673</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aperture antennas</topic><topic>Array signal processing</topic><topic>Radar</topic><topic>Radar antennas</topic><topic>Routing</topic><topic>Wireless communication</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Monroe, Nathan M.</creatorcontrib><creatorcontrib>Dogiamis, Georgios C.</creatorcontrib><creatorcontrib>Stingel, Robert</creatorcontrib><creatorcontrib>Myers, Preston</creatorcontrib><creatorcontrib>Chen, Xibi</creatorcontrib><creatorcontrib>Han, Ruonan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Monroe, Nathan M.</au><au>Dogiamis, Georgios C.</au><au>Stingel, Robert</au><au>Myers, Preston</au><au>Chen, Xibi</au><au>Han, Ruonan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Electronic THz Pencil Beam Forming and 2D Steering for High Angular-Resolution Operation: A 98 \times 98-Unit 265GHz CMOS Reflectarray with In-Unit Digital Beam Shaping and Squint Correction</atitle><btitle>2022 IEEE International Solid- State Circuits Conference (ISSCC)</btitle><stitle>ISSCC</stitle><date>2022-02-20</date><risdate>2022</risdate><volume>65</volume><spage>1</spage><epage>3</epage><pages>1-3</pages><eissn>2376-8606</eissn><eisbn>9781665428002</eisbn><eisbn>1665428007</eisbn><abstract>Ultra-sharp beam forming and high-angular-resolution steering in both azimuth and elevation directions are required in high-performance imaging sensors, spatial-multiplexed wireless links and other applications. This poses great challenges due to the fundamental relationship between the beamwidth and the dimension of the antenna aperture. As shown in Fig. 4.5.1, the aperture size required to achieve 1 ° of 3dB beamwidth is 0.6\times 0.6\mathrm{m}^{2} and 0.2\times 0.2\mathrm{m}^{2} at 24GHz and 77GHz, respectively. In current radars, sparse MIMO antenna schemes are adopted to synthesize virtual arrays with the above size in one dimension. However, they require intensive signal processing of many channels. The complex signal routing and placement of active electronics also leads to challenges in the 2D scaling required for pencil beam forming. By increasing the wave frequency to 265GHz, the work in this paper significantly reduces the aperture area, allowing it to be fully realized by digitally controlled, reflective antennas in CMOS microelectronic chips (Fig. 4.5.1). Similar to a concave mirror, a reflectarray, when illuminated by a single radar source, applies incident-angle-dependent phase shifts (e.g. \varphi_{1} and \varphi_{2} in Fig. 4.5.1) to the wave and re-focuses it towards a desired direction. This quasi-optical spatial feed eliminates the high-frequency signal routing and complex processing inherent to MIMO arrays. Employing 98\times 98 antenna elements, we experimentally demonstrate the forming and electronic steering of a THz pencil beam with- 1 ° beamwidth in two dimensions. With under-antenna integration of dense memory cells, sidelobe reduction and squint correction are also achieved.</abstract><pub>IEEE</pub><doi>10.1109/ISSCC42614.2022.9731671</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2376-8606
ispartof 2022 IEEE International Solid- State Circuits Conference (ISSCC), 2022, Vol.65, p.1-3
issn 2376-8606
language eng
recordid cdi_ieee_primary_9731671
source IEEE Xplore All Conference Series
subjects Aperture antennas
Array signal processing
Radar
Radar antennas
Routing
Wireless communication
Wireless sensor networks
title Electronic THz Pencil Beam Forming and 2D Steering for High Angular-Resolution Operation: A 98 \times 98-Unit 265GHz CMOS Reflectarray with In-Unit Digital Beam Shaping and Squint Correction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A44%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Electronic%20THz%20Pencil%20Beam%20Forming%20and%202D%20Steering%20for%20High%20Angular-Resolution%20Operation:%20A%2098%20%5Ctimes%2098-Unit%20265GHz%20CMOS%20Reflectarray%20with%20In-Unit%20Digital%20Beam%20Shaping%20and%20Squint%20Correction&rft.btitle=2022%20IEEE%20International%20Solid-%20State%20Circuits%20Conference%20(ISSCC)&rft.au=Monroe,%20Nathan%20M.&rft.date=2022-02-20&rft.volume=65&rft.spage=1&rft.epage=3&rft.pages=1-3&rft.eissn=2376-8606&rft_id=info:doi/10.1109/ISSCC42614.2022.9731671&rft.eisbn=9781665428002&rft.eisbn_list=1665428007&rft_dat=%3Cieee_CHZPO%3E9731671%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i481-6f610babd1ddae6c8afd87abaebc36feae51374e8e4c454dc40d2c462c99e3673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9731671&rfr_iscdi=true