Loading…
Video Traffic Volume Extraction Based on Onelevel Feature
In this paper, a single-level feature detector network based on YOLOF is built to detect objects and extract traffic volume information for videos. YOLOF does not have a multi-scale feature fusion structure (such as FPN, PAN). It uses the dilated encoder and uniform matching method to replace the fu...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1764 |
container_issue | |
container_start_page | 1760 |
container_title | |
container_volume | 6 |
creator | Teng, Da Xie, Xingsheng Sun, Jiejie |
description | In this paper, a single-level feature detector network based on YOLOF is built to detect objects and extract traffic volume information for videos. YOLOF does not have a multi-scale feature fusion structure (such as FPN, PAN). It uses the dilated encoder and uniform matching method to replace the fusion feature module, which simplifies the network structure and improves the response time while maintaining good accuracy. Finally, the target tracking algorithm is used to obtain the traffic flow statistics in the video sequence. Generally speaking, YOLOF has higher detection performance and faster speed than RetinaNet, DETR and other networks of similar structure. |
doi_str_mv | 10.1109/ITOEC53115.2022.9734413 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9734413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9734413</ieee_id><sourcerecordid>9734413</sourcerecordid><originalsourceid>FETCH-LOGICAL-i482-9e37e0d9cbdc908d9e943405f2a0650e61df66e58fe1431a4c2590ad3977306f3</originalsourceid><addsrcrecordid>eNotj8FKw0AURUdBsNZ-gQvnBxLfzJuZ5C01pFooZBOKuzJm3sBI2kiSiv69Bbu6Z3U4V4hHBblSQE-btqkri0rZXIPWORVojMIrcaecswZVaYtrsdCOMNMlvd-K1TR9AgBqQCppIWiXAg-yHX2MqZO7oT8dWNY_8-i7OQ1H-eInDvIMzZF7_uZertnPp5HvxU30_cSryy5Fu67b6i3bNq-b6nmbJVPqjBgLhkDdR-gIykBMBg3YqD04C-xUiM6xLSOrc683nbYEPiAVBYKLuBQP_9rEzPuvMR38-Lu_HMU_TrBHEg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Video Traffic Volume Extraction Based on Onelevel Feature</title><source>IEEE Xplore All Conference Series</source><creator>Teng, Da ; Xie, Xingsheng ; Sun, Jiejie</creator><creatorcontrib>Teng, Da ; Xie, Xingsheng ; Sun, Jiejie</creatorcontrib><description>In this paper, a single-level feature detector network based on YOLOF is built to detect objects and extract traffic volume information for videos. YOLOF does not have a multi-scale feature fusion structure (such as FPN, PAN). It uses the dilated encoder and uniform matching method to replace the fusion feature module, which simplifies the network structure and improves the response time while maintaining good accuracy. Finally, the target tracking algorithm is used to obtain the traffic flow statistics in the video sequence. Generally speaking, YOLOF has higher detection performance and faster speed than RetinaNet, DETR and other networks of similar structure.</description><identifier>EISSN: 2693-289X</identifier><identifier>EISBN: 1665431857</identifier><identifier>EISBN: 9781665431859</identifier><identifier>DOI: 10.1109/ITOEC53115.2022.9734413</identifier><language>eng</language><publisher>IEEE</publisher><subject>Backbone ; Deep learning ; Detectors ; Feature extraction ; Mechatronics ; Sensitivity ; Target tracking ; traffic volume ; Training ; Video object detection ; Video sequences ; Yolof</subject><ispartof>2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC), 2022, Vol.6, p.1760-1764</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9734413$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9734413$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Teng, Da</creatorcontrib><creatorcontrib>Xie, Xingsheng</creatorcontrib><creatorcontrib>Sun, Jiejie</creatorcontrib><title>Video Traffic Volume Extraction Based on Onelevel Feature</title><title>2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC)</title><addtitle>ITOEC</addtitle><description>In this paper, a single-level feature detector network based on YOLOF is built to detect objects and extract traffic volume information for videos. YOLOF does not have a multi-scale feature fusion structure (such as FPN, PAN). It uses the dilated encoder and uniform matching method to replace the fusion feature module, which simplifies the network structure and improves the response time while maintaining good accuracy. Finally, the target tracking algorithm is used to obtain the traffic flow statistics in the video sequence. Generally speaking, YOLOF has higher detection performance and faster speed than RetinaNet, DETR and other networks of similar structure.</description><subject>Backbone</subject><subject>Deep learning</subject><subject>Detectors</subject><subject>Feature extraction</subject><subject>Mechatronics</subject><subject>Sensitivity</subject><subject>Target tracking</subject><subject>traffic volume</subject><subject>Training</subject><subject>Video object detection</subject><subject>Video sequences</subject><subject>Yolof</subject><issn>2693-289X</issn><isbn>1665431857</isbn><isbn>9781665431859</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8FKw0AURUdBsNZ-gQvnBxLfzJuZ5C01pFooZBOKuzJm3sBI2kiSiv69Bbu6Z3U4V4hHBblSQE-btqkri0rZXIPWORVojMIrcaecswZVaYtrsdCOMNMlvd-K1TR9AgBqQCppIWiXAg-yHX2MqZO7oT8dWNY_8-i7OQ1H-eInDvIMzZF7_uZertnPp5HvxU30_cSryy5Fu67b6i3bNq-b6nmbJVPqjBgLhkDdR-gIykBMBg3YqD04C-xUiM6xLSOrc683nbYEPiAVBYKLuBQP_9rEzPuvMR38-Lu_HMU_TrBHEg</recordid><startdate>20220304</startdate><enddate>20220304</enddate><creator>Teng, Da</creator><creator>Xie, Xingsheng</creator><creator>Sun, Jiejie</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20220304</creationdate><title>Video Traffic Volume Extraction Based on Onelevel Feature</title><author>Teng, Da ; Xie, Xingsheng ; Sun, Jiejie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i482-9e37e0d9cbdc908d9e943405f2a0650e61df66e58fe1431a4c2590ad3977306f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Backbone</topic><topic>Deep learning</topic><topic>Detectors</topic><topic>Feature extraction</topic><topic>Mechatronics</topic><topic>Sensitivity</topic><topic>Target tracking</topic><topic>traffic volume</topic><topic>Training</topic><topic>Video object detection</topic><topic>Video sequences</topic><topic>Yolof</topic><toplevel>online_resources</toplevel><creatorcontrib>Teng, Da</creatorcontrib><creatorcontrib>Xie, Xingsheng</creatorcontrib><creatorcontrib>Sun, Jiejie</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Teng, Da</au><au>Xie, Xingsheng</au><au>Sun, Jiejie</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Video Traffic Volume Extraction Based on Onelevel Feature</atitle><btitle>2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC)</btitle><stitle>ITOEC</stitle><date>2022-03-04</date><risdate>2022</risdate><volume>6</volume><spage>1760</spage><epage>1764</epage><pages>1760-1764</pages><eissn>2693-289X</eissn><eisbn>1665431857</eisbn><eisbn>9781665431859</eisbn><abstract>In this paper, a single-level feature detector network based on YOLOF is built to detect objects and extract traffic volume information for videos. YOLOF does not have a multi-scale feature fusion structure (such as FPN, PAN). It uses the dilated encoder and uniform matching method to replace the fusion feature module, which simplifies the network structure and improves the response time while maintaining good accuracy. Finally, the target tracking algorithm is used to obtain the traffic flow statistics in the video sequence. Generally speaking, YOLOF has higher detection performance and faster speed than RetinaNet, DETR and other networks of similar structure.</abstract><pub>IEEE</pub><doi>10.1109/ITOEC53115.2022.9734413</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2693-289X |
ispartof | 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC), 2022, Vol.6, p.1760-1764 |
issn | 2693-289X |
language | eng |
recordid | cdi_ieee_primary_9734413 |
source | IEEE Xplore All Conference Series |
subjects | Backbone Deep learning Detectors Feature extraction Mechatronics Sensitivity Target tracking traffic volume Training Video object detection Video sequences Yolof |
title | Video Traffic Volume Extraction Based on Onelevel Feature |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A58%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Video%20Traffic%20Volume%20Extraction%20Based%20on%20Onelevel%20Feature&rft.btitle=2022%20IEEE%206th%20Information%20Technology%20and%20Mechatronics%20Engineering%20Conference%20(ITOEC)&rft.au=Teng,%20Da&rft.date=2022-03-04&rft.volume=6&rft.spage=1760&rft.epage=1764&rft.pages=1760-1764&rft.eissn=2693-289X&rft_id=info:doi/10.1109/ITOEC53115.2022.9734413&rft.eisbn=1665431857&rft.eisbn_list=9781665431859&rft_dat=%3Cieee_CHZPO%3E9734413%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i482-9e37e0d9cbdc908d9e943405f2a0650e61df66e58fe1431a4c2590ad3977306f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9734413&rfr_iscdi=true |