Loading…
Multi-beam Sonar Elevation Data Prediction Based on Optimized BP Neural Network
The BP neural network is trained by using the elevation data of multi-beam sonar around the artificial reef. The results show that the neural network can obtain better prediction results based on the topographic trend data of the surrounding seabed. GA and PSO are used to optimize the weights and th...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 888 |
container_issue | |
container_start_page | 883 |
container_title | |
container_volume | 6 |
creator | Liu, Lishou Xiong, Haojie Lu, Yuanhang |
description | The BP neural network is trained by using the elevation data of multi-beam sonar around the artificial reef. The results show that the neural network can obtain better prediction results based on the topographic trend data of the surrounding seabed. GA and PSO are used to optimize the weights and thresholds of BP neural network respectively, and the prediction results of traditional Kriging method, Yang Chizhong filtering and estimation method, BP neural network, GA-BP neural network and PSO-BP neural network are compared and analyzed. It is found that PSO-BP neural network prediction model is superior to other methods. The multi-beam sonar elevation data around the artificial reef is used to predict the bottom elevation data of the artificial reef, and the cubic meter is calculated. The results show that PSO-BP neural network is obviously superior to other methods, and the prediction accuracy of the data is higher and the fitting effect is better, which can be well applied to the monitoring of the cubic meter of the artificial reef. |
doi_str_mv | 10.1109/ITOEC53115.2022.9734449 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9734449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9734449</ieee_id><sourcerecordid>9734449</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-b06117523faa5e026625fdd51b3c15232febd87b5cf1d22be0d325579bf2d2203</originalsourceid><addsrcrecordid>eNotj9FKwzAYhaMgOOeewAv7Aq35_zRpc-nq1MG0Ayd4N5ImgWi7jjRT9OktuqvvfOfiwCHkGmgGQOXNclMvKs4AeIYUMZMFy_NcnpALEILnDEpenJIJCslSLOXbOZkNwzullCFlspQTUj8d2uhTbVWXvPQ7FZJFaz9V9P0uuVNRJetgjW_-fK4Ga5Ix1PvoO_8zynydPNtDUO2I-NWHj0ty5lQ72NmRU_J6v9hUj-mqflhWt6vUA5Qx1VQAFByZU4pbikIgd8Zw0KyBsUZntSkLzRsHBlFbahhyXkjtcHTKpuTqf9dba7f74DsVvrfH_-wXEVpPfA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multi-beam Sonar Elevation Data Prediction Based on Optimized BP Neural Network</title><source>IEEE Xplore All Conference Series</source><creator>Liu, Lishou ; Xiong, Haojie ; Lu, Yuanhang</creator><creatorcontrib>Liu, Lishou ; Xiong, Haojie ; Lu, Yuanhang</creatorcontrib><description>The BP neural network is trained by using the elevation data of multi-beam sonar around the artificial reef. The results show that the neural network can obtain better prediction results based on the topographic trend data of the surrounding seabed. GA and PSO are used to optimize the weights and thresholds of BP neural network respectively, and the prediction results of traditional Kriging method, Yang Chizhong filtering and estimation method, BP neural network, GA-BP neural network and PSO-BP neural network are compared and analyzed. It is found that PSO-BP neural network prediction model is superior to other methods. The multi-beam sonar elevation data around the artificial reef is used to predict the bottom elevation data of the artificial reef, and the cubic meter is calculated. The results show that PSO-BP neural network is obviously superior to other methods, and the prediction accuracy of the data is higher and the fitting effect is better, which can be well applied to the monitoring of the cubic meter of the artificial reef.</description><identifier>EISSN: 2693-289X</identifier><identifier>EISBN: 1665431857</identifier><identifier>EISBN: 9781665431859</identifier><identifier>DOI: 10.1109/ITOEC53115.2022.9734449</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial reef ; BP neural network ; Data models ; Estimation ; Filtering ; Genetic algorithm ; Height data of multi-beam sonar ; Meters ; Neural networks ; Particle swarm optimization ; Predictive models ; Stability analysis</subject><ispartof>2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC), 2022, Vol.6, p.883-888</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9734449$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9734449$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Lishou</creatorcontrib><creatorcontrib>Xiong, Haojie</creatorcontrib><creatorcontrib>Lu, Yuanhang</creatorcontrib><title>Multi-beam Sonar Elevation Data Prediction Based on Optimized BP Neural Network</title><title>2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC)</title><addtitle>ITOEC</addtitle><description>The BP neural network is trained by using the elevation data of multi-beam sonar around the artificial reef. The results show that the neural network can obtain better prediction results based on the topographic trend data of the surrounding seabed. GA and PSO are used to optimize the weights and thresholds of BP neural network respectively, and the prediction results of traditional Kriging method, Yang Chizhong filtering and estimation method, BP neural network, GA-BP neural network and PSO-BP neural network are compared and analyzed. It is found that PSO-BP neural network prediction model is superior to other methods. The multi-beam sonar elevation data around the artificial reef is used to predict the bottom elevation data of the artificial reef, and the cubic meter is calculated. The results show that PSO-BP neural network is obviously superior to other methods, and the prediction accuracy of the data is higher and the fitting effect is better, which can be well applied to the monitoring of the cubic meter of the artificial reef.</description><subject>Artificial reef</subject><subject>BP neural network</subject><subject>Data models</subject><subject>Estimation</subject><subject>Filtering</subject><subject>Genetic algorithm</subject><subject>Height data of multi-beam sonar</subject><subject>Meters</subject><subject>Neural networks</subject><subject>Particle swarm optimization</subject><subject>Predictive models</subject><subject>Stability analysis</subject><issn>2693-289X</issn><isbn>1665431857</isbn><isbn>9781665431859</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj9FKwzAYhaMgOOeewAv7Aq35_zRpc-nq1MG0Ayd4N5ImgWi7jjRT9OktuqvvfOfiwCHkGmgGQOXNclMvKs4AeIYUMZMFy_NcnpALEILnDEpenJIJCslSLOXbOZkNwzullCFlspQTUj8d2uhTbVWXvPQ7FZJFaz9V9P0uuVNRJetgjW_-fK4Ga5Ix1PvoO_8zynydPNtDUO2I-NWHj0ty5lQ72NmRU_J6v9hUj-mqflhWt6vUA5Qx1VQAFByZU4pbikIgd8Zw0KyBsUZntSkLzRsHBlFbahhyXkjtcHTKpuTqf9dba7f74DsVvrfH_-wXEVpPfA</recordid><startdate>20220304</startdate><enddate>20220304</enddate><creator>Liu, Lishou</creator><creator>Xiong, Haojie</creator><creator>Lu, Yuanhang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20220304</creationdate><title>Multi-beam Sonar Elevation Data Prediction Based on Optimized BP Neural Network</title><author>Liu, Lishou ; Xiong, Haojie ; Lu, Yuanhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-b06117523faa5e026625fdd51b3c15232febd87b5cf1d22be0d325579bf2d2203</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial reef</topic><topic>BP neural network</topic><topic>Data models</topic><topic>Estimation</topic><topic>Filtering</topic><topic>Genetic algorithm</topic><topic>Height data of multi-beam sonar</topic><topic>Meters</topic><topic>Neural networks</topic><topic>Particle swarm optimization</topic><topic>Predictive models</topic><topic>Stability analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Lishou</creatorcontrib><creatorcontrib>Xiong, Haojie</creatorcontrib><creatorcontrib>Lu, Yuanhang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Lishou</au><au>Xiong, Haojie</au><au>Lu, Yuanhang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multi-beam Sonar Elevation Data Prediction Based on Optimized BP Neural Network</atitle><btitle>2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC)</btitle><stitle>ITOEC</stitle><date>2022-03-04</date><risdate>2022</risdate><volume>6</volume><spage>883</spage><epage>888</epage><pages>883-888</pages><eissn>2693-289X</eissn><eisbn>1665431857</eisbn><eisbn>9781665431859</eisbn><abstract>The BP neural network is trained by using the elevation data of multi-beam sonar around the artificial reef. The results show that the neural network can obtain better prediction results based on the topographic trend data of the surrounding seabed. GA and PSO are used to optimize the weights and thresholds of BP neural network respectively, and the prediction results of traditional Kriging method, Yang Chizhong filtering and estimation method, BP neural network, GA-BP neural network and PSO-BP neural network are compared and analyzed. It is found that PSO-BP neural network prediction model is superior to other methods. The multi-beam sonar elevation data around the artificial reef is used to predict the bottom elevation data of the artificial reef, and the cubic meter is calculated. The results show that PSO-BP neural network is obviously superior to other methods, and the prediction accuracy of the data is higher and the fitting effect is better, which can be well applied to the monitoring of the cubic meter of the artificial reef.</abstract><pub>IEEE</pub><doi>10.1109/ITOEC53115.2022.9734449</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2693-289X |
ispartof | 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC), 2022, Vol.6, p.883-888 |
issn | 2693-289X |
language | eng |
recordid | cdi_ieee_primary_9734449 |
source | IEEE Xplore All Conference Series |
subjects | Artificial reef BP neural network Data models Estimation Filtering Genetic algorithm Height data of multi-beam sonar Meters Neural networks Particle swarm optimization Predictive models Stability analysis |
title | Multi-beam Sonar Elevation Data Prediction Based on Optimized BP Neural Network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A41%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multi-beam%20Sonar%20Elevation%20Data%20Prediction%20Based%20on%20Optimized%20BP%20Neural%20Network&rft.btitle=2022%20IEEE%206th%20Information%20Technology%20and%20Mechatronics%20Engineering%20Conference%20(ITOEC)&rft.au=Liu,%20Lishou&rft.date=2022-03-04&rft.volume=6&rft.spage=883&rft.epage=888&rft.pages=883-888&rft.eissn=2693-289X&rft_id=info:doi/10.1109/ITOEC53115.2022.9734449&rft.eisbn=1665431857&rft.eisbn_list=9781665431859&rft_dat=%3Cieee_CHZPO%3E9734449%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i118t-b06117523faa5e026625fdd51b3c15232febd87b5cf1d22be0d325579bf2d2203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9734449&rfr_iscdi=true |