Loading…

Multi-beam Sonar Elevation Data Prediction Based on Optimized BP Neural Network

The BP neural network is trained by using the elevation data of multi-beam sonar around the artificial reef. The results show that the neural network can obtain better prediction results based on the topographic trend data of the surrounding seabed. GA and PSO are used to optimize the weights and th...

Full description

Saved in:
Bibliographic Details
Main Authors: Liu, Lishou, Xiong, Haojie, Lu, Yuanhang
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 888
container_issue
container_start_page 883
container_title
container_volume 6
creator Liu, Lishou
Xiong, Haojie
Lu, Yuanhang
description The BP neural network is trained by using the elevation data of multi-beam sonar around the artificial reef. The results show that the neural network can obtain better prediction results based on the topographic trend data of the surrounding seabed. GA and PSO are used to optimize the weights and thresholds of BP neural network respectively, and the prediction results of traditional Kriging method, Yang Chizhong filtering and estimation method, BP neural network, GA-BP neural network and PSO-BP neural network are compared and analyzed. It is found that PSO-BP neural network prediction model is superior to other methods. The multi-beam sonar elevation data around the artificial reef is used to predict the bottom elevation data of the artificial reef, and the cubic meter is calculated. The results show that PSO-BP neural network is obviously superior to other methods, and the prediction accuracy of the data is higher and the fitting effect is better, which can be well applied to the monitoring of the cubic meter of the artificial reef.
doi_str_mv 10.1109/ITOEC53115.2022.9734449
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9734449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9734449</ieee_id><sourcerecordid>9734449</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-b06117523faa5e026625fdd51b3c15232febd87b5cf1d22be0d325579bf2d2203</originalsourceid><addsrcrecordid>eNotj9FKwzAYhaMgOOeewAv7Aq35_zRpc-nq1MG0Ayd4N5ImgWi7jjRT9OktuqvvfOfiwCHkGmgGQOXNclMvKs4AeIYUMZMFy_NcnpALEILnDEpenJIJCslSLOXbOZkNwzullCFlspQTUj8d2uhTbVWXvPQ7FZJFaz9V9P0uuVNRJetgjW_-fK4Ga5Ix1PvoO_8zynydPNtDUO2I-NWHj0ty5lQ72NmRU_J6v9hUj-mqflhWt6vUA5Qx1VQAFByZU4pbikIgd8Zw0KyBsUZntSkLzRsHBlFbahhyXkjtcHTKpuTqf9dba7f74DsVvrfH_-wXEVpPfA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multi-beam Sonar Elevation Data Prediction Based on Optimized BP Neural Network</title><source>IEEE Xplore All Conference Series</source><creator>Liu, Lishou ; Xiong, Haojie ; Lu, Yuanhang</creator><creatorcontrib>Liu, Lishou ; Xiong, Haojie ; Lu, Yuanhang</creatorcontrib><description>The BP neural network is trained by using the elevation data of multi-beam sonar around the artificial reef. The results show that the neural network can obtain better prediction results based on the topographic trend data of the surrounding seabed. GA and PSO are used to optimize the weights and thresholds of BP neural network respectively, and the prediction results of traditional Kriging method, Yang Chizhong filtering and estimation method, BP neural network, GA-BP neural network and PSO-BP neural network are compared and analyzed. It is found that PSO-BP neural network prediction model is superior to other methods. The multi-beam sonar elevation data around the artificial reef is used to predict the bottom elevation data of the artificial reef, and the cubic meter is calculated. The results show that PSO-BP neural network is obviously superior to other methods, and the prediction accuracy of the data is higher and the fitting effect is better, which can be well applied to the monitoring of the cubic meter of the artificial reef.</description><identifier>EISSN: 2693-289X</identifier><identifier>EISBN: 1665431857</identifier><identifier>EISBN: 9781665431859</identifier><identifier>DOI: 10.1109/ITOEC53115.2022.9734449</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial reef ; BP neural network ; Data models ; Estimation ; Filtering ; Genetic algorithm ; Height data of multi-beam sonar ; Meters ; Neural networks ; Particle swarm optimization ; Predictive models ; Stability analysis</subject><ispartof>2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC), 2022, Vol.6, p.883-888</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9734449$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9734449$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Lishou</creatorcontrib><creatorcontrib>Xiong, Haojie</creatorcontrib><creatorcontrib>Lu, Yuanhang</creatorcontrib><title>Multi-beam Sonar Elevation Data Prediction Based on Optimized BP Neural Network</title><title>2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC)</title><addtitle>ITOEC</addtitle><description>The BP neural network is trained by using the elevation data of multi-beam sonar around the artificial reef. The results show that the neural network can obtain better prediction results based on the topographic trend data of the surrounding seabed. GA and PSO are used to optimize the weights and thresholds of BP neural network respectively, and the prediction results of traditional Kriging method, Yang Chizhong filtering and estimation method, BP neural network, GA-BP neural network and PSO-BP neural network are compared and analyzed. It is found that PSO-BP neural network prediction model is superior to other methods. The multi-beam sonar elevation data around the artificial reef is used to predict the bottom elevation data of the artificial reef, and the cubic meter is calculated. The results show that PSO-BP neural network is obviously superior to other methods, and the prediction accuracy of the data is higher and the fitting effect is better, which can be well applied to the monitoring of the cubic meter of the artificial reef.</description><subject>Artificial reef</subject><subject>BP neural network</subject><subject>Data models</subject><subject>Estimation</subject><subject>Filtering</subject><subject>Genetic algorithm</subject><subject>Height data of multi-beam sonar</subject><subject>Meters</subject><subject>Neural networks</subject><subject>Particle swarm optimization</subject><subject>Predictive models</subject><subject>Stability analysis</subject><issn>2693-289X</issn><isbn>1665431857</isbn><isbn>9781665431859</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj9FKwzAYhaMgOOeewAv7Aq35_zRpc-nq1MG0Ayd4N5ImgWi7jjRT9OktuqvvfOfiwCHkGmgGQOXNclMvKs4AeIYUMZMFy_NcnpALEILnDEpenJIJCslSLOXbOZkNwzullCFlspQTUj8d2uhTbVWXvPQ7FZJFaz9V9P0uuVNRJetgjW_-fK4Ga5Ix1PvoO_8zynydPNtDUO2I-NWHj0ty5lQ72NmRU_J6v9hUj-mqflhWt6vUA5Qx1VQAFByZU4pbikIgd8Zw0KyBsUZntSkLzRsHBlFbahhyXkjtcHTKpuTqf9dba7f74DsVvrfH_-wXEVpPfA</recordid><startdate>20220304</startdate><enddate>20220304</enddate><creator>Liu, Lishou</creator><creator>Xiong, Haojie</creator><creator>Lu, Yuanhang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20220304</creationdate><title>Multi-beam Sonar Elevation Data Prediction Based on Optimized BP Neural Network</title><author>Liu, Lishou ; Xiong, Haojie ; Lu, Yuanhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-b06117523faa5e026625fdd51b3c15232febd87b5cf1d22be0d325579bf2d2203</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial reef</topic><topic>BP neural network</topic><topic>Data models</topic><topic>Estimation</topic><topic>Filtering</topic><topic>Genetic algorithm</topic><topic>Height data of multi-beam sonar</topic><topic>Meters</topic><topic>Neural networks</topic><topic>Particle swarm optimization</topic><topic>Predictive models</topic><topic>Stability analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Lishou</creatorcontrib><creatorcontrib>Xiong, Haojie</creatorcontrib><creatorcontrib>Lu, Yuanhang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Lishou</au><au>Xiong, Haojie</au><au>Lu, Yuanhang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multi-beam Sonar Elevation Data Prediction Based on Optimized BP Neural Network</atitle><btitle>2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC)</btitle><stitle>ITOEC</stitle><date>2022-03-04</date><risdate>2022</risdate><volume>6</volume><spage>883</spage><epage>888</epage><pages>883-888</pages><eissn>2693-289X</eissn><eisbn>1665431857</eisbn><eisbn>9781665431859</eisbn><abstract>The BP neural network is trained by using the elevation data of multi-beam sonar around the artificial reef. The results show that the neural network can obtain better prediction results based on the topographic trend data of the surrounding seabed. GA and PSO are used to optimize the weights and thresholds of BP neural network respectively, and the prediction results of traditional Kriging method, Yang Chizhong filtering and estimation method, BP neural network, GA-BP neural network and PSO-BP neural network are compared and analyzed. It is found that PSO-BP neural network prediction model is superior to other methods. The multi-beam sonar elevation data around the artificial reef is used to predict the bottom elevation data of the artificial reef, and the cubic meter is calculated. The results show that PSO-BP neural network is obviously superior to other methods, and the prediction accuracy of the data is higher and the fitting effect is better, which can be well applied to the monitoring of the cubic meter of the artificial reef.</abstract><pub>IEEE</pub><doi>10.1109/ITOEC53115.2022.9734449</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2693-289X
ispartof 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC), 2022, Vol.6, p.883-888
issn 2693-289X
language eng
recordid cdi_ieee_primary_9734449
source IEEE Xplore All Conference Series
subjects Artificial reef
BP neural network
Data models
Estimation
Filtering
Genetic algorithm
Height data of multi-beam sonar
Meters
Neural networks
Particle swarm optimization
Predictive models
Stability analysis
title Multi-beam Sonar Elevation Data Prediction Based on Optimized BP Neural Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A41%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multi-beam%20Sonar%20Elevation%20Data%20Prediction%20Based%20on%20Optimized%20BP%20Neural%20Network&rft.btitle=2022%20IEEE%206th%20Information%20Technology%20and%20Mechatronics%20Engineering%20Conference%20(ITOEC)&rft.au=Liu,%20Lishou&rft.date=2022-03-04&rft.volume=6&rft.spage=883&rft.epage=888&rft.pages=883-888&rft.eissn=2693-289X&rft_id=info:doi/10.1109/ITOEC53115.2022.9734449&rft.eisbn=1665431857&rft.eisbn_list=9781665431859&rft_dat=%3Cieee_CHZPO%3E9734449%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i118t-b06117523faa5e026625fdd51b3c15232febd87b5cf1d22be0d325579bf2d2203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9734449&rfr_iscdi=true