Loading…
Measurement Technique for Interface and Surface Conductivities at Millimeter-Wave Frequencies Using Dielectric Rod Resonator Excited by Nonradiative Dielectric Waveguide
Herein, we propose a new technique for measuring interface and surface conductivities, \sigma _{i} and \sigma _{s} , of circuit substrates separately at millimeter-wave frequencies using a TE _{0m\delta } ( m =1 , 2, 3, \ldots, \delta < 1 ) mode single-crystal sapphire rod resonator excited...
Saved in:
Published in: | IEEE transactions on microwave theory and techniques 2022-05, Vol.70 (5), p.2750-2761 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c223t-fa15fd4bc708f99dcbdef287871e72aac70037aca33857a8792572f6acab29673 |
---|---|
cites | cdi_FETCH-LOGICAL-c223t-fa15fd4bc708f99dcbdef287871e72aac70037aca33857a8792572f6acab29673 |
container_end_page | 2761 |
container_issue | 5 |
container_start_page | 2750 |
container_title | IEEE transactions on microwave theory and techniques |
container_volume | 70 |
creator | Hirayama, Naoki Nakayama, Akira Yoshikawa, Hiromichi Shimizu, Takashi Kogami, Yoshinori |
description | Herein, we propose a new technique for measuring interface and surface conductivities, \sigma _{i} and \sigma _{s} , of circuit substrates separately at millimeter-wave frequencies using a TE _{0m\delta } ( m =1 , 2, 3, \ldots, \delta < 1 ) mode single-crystal sapphire rod resonator excited via nonradiative dielectric waveguide (NRD guide). Here, \sigma _{i} represents an effective conductivity of conductor at the dielectric side. On the other hand, \sigma _{s} represents an effective conductivity at the shiny side of the conductor. Evaluating \sigma _{i} and \sigma _{s} separately is essential for high-precision circuit design at microwave and millimeter-wave frequencies and the development of low-loss circuit substrates. The superiority of NRD guide excitation compared with the conventional loop antenna excitation was confirmed through both experiments and simulations for the dielectric resonator at millimeter-wave frequencies. The feasibility of the proposed technique was verified by measuring \sigma _{i} and \sigma _{s} of the two types of commercially available copper-clad substrates, which were liquid-crystal-polymer-based and polytetrafluoroethylene-based substrates, at approximately 62, 74, and 80 GHz. In addition, we confirmed that these data were consistent with respect to the frequency with the measured results obtained using the conventional technique via loop antenna excitation at microwave frequencies, demonstrating the validity of the proposed technique. The measured results from 2 to 80 GHz showed that \sigma _{i} had a smaller value than \sig |
doi_str_mv | 10.1109/TMTT.2022.3157301 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9737687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9737687</ieee_id><sourcerecordid>2660158927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-fa15fd4bc708f99dcbdef287871e72aac70037aca33857a8792572f6acab29673</originalsourceid><addsrcrecordid>eNpNUctKAzEUDaJgfXyAuAm4nppHZ5JZSrUqWIU64nJIkxuNtBlNMmI_yb80Q0Vc3dc553LvQeiEkjGlpD5v5k0zZoSxMael4ITuoBEtS1HUlSC7aEQIlUU9kWQfHcT4lstJSeQIfc9BxT7AGnzCDehX7z56wLYL-NYnCFZpwMob_Nhv82nnTa-T-3TJQcQq4blbrdwaMrh4Vp-AZwGyhNfD-Ck6_4IvHaxAp-A0XnQGLyB2XqW84upLuwQGLzf4vvNBGaeyMvwnDJIvvTNwhPasWkU4_o2H6Gl21UxviruH69vpxV2hGeOpsIqW1kyWWhBp69ropQHLpJCCgmBK5T7hQmnFuSyFkqJmpWC2yp0ly8_ih-hsq_seunxHTO1b1wefV7asqggtZc0GFN2idOhiDGDb9-DWKmxaStrBkXZwpB0caX8dyZzTLccBwB--FlxUUvAfzraLsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660158927</pqid></control><display><type>article</type><title>Measurement Technique for Interface and Surface Conductivities at Millimeter-Wave Frequencies Using Dielectric Rod Resonator Excited by Nonradiative Dielectric Waveguide</title><source>IEEE Xplore (Online service)</source><creator>Hirayama, Naoki ; Nakayama, Akira ; Yoshikawa, Hiromichi ; Shimizu, Takashi ; Kogami, Yoshinori</creator><creatorcontrib>Hirayama, Naoki ; Nakayama, Akira ; Yoshikawa, Hiromichi ; Shimizu, Takashi ; Kogami, Yoshinori</creatorcontrib><description><![CDATA[Herein, we propose a new technique for measuring interface and surface conductivities, <inline-formula> <tex-math notation="LaTeX">\sigma _{i} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\sigma _{s} </tex-math></inline-formula>, of circuit substrates separately at millimeter-wave frequencies using a TE<inline-formula> <tex-math notation="LaTeX">_{0m\delta } </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">m =1 </tex-math></inline-formula>, 2, <inline-formula> <tex-math notation="LaTeX">3, \ldots, \delta < 1 </tex-math></inline-formula>) mode single-crystal sapphire rod resonator excited via nonradiative dielectric waveguide (NRD guide). Here, <inline-formula> <tex-math notation="LaTeX">\sigma _{i} </tex-math></inline-formula> represents an effective conductivity of conductor at the dielectric side. On the other hand, <inline-formula> <tex-math notation="LaTeX">\sigma _{s} </tex-math></inline-formula> represents an effective conductivity at the shiny side of the conductor. Evaluating <inline-formula> <tex-math notation="LaTeX">\sigma _{i} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\sigma _{s} </tex-math></inline-formula> separately is essential for high-precision circuit design at microwave and millimeter-wave frequencies and the development of low-loss circuit substrates. The superiority of NRD guide excitation compared with the conventional loop antenna excitation was confirmed through both experiments and simulations for the dielectric resonator at millimeter-wave frequencies. The feasibility of the proposed technique was verified by measuring <inline-formula> <tex-math notation="LaTeX">\sigma _{i} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\sigma _{s} </tex-math></inline-formula> of the two types of commercially available copper-clad substrates, which were liquid-crystal-polymer-based and polytetrafluoroethylene-based substrates, at approximately 62, 74, and 80 GHz. In addition, we confirmed that these data were consistent with respect to the frequency with the measured results obtained using the conventional technique via loop antenna excitation at microwave frequencies, demonstrating the validity of the proposed technique. The measured results from 2 to 80 GHz showed that <inline-formula> <tex-math notation="LaTeX">\sigma _{i} </tex-math></inline-formula> had a smaller value than <inline-formula> <tex-math notation="LaTeX">\sigma _{s} </tex-math></inline-formula> and their values decreased with increasing frequency. Furthermore, it was found that the frequency dependence of <inline-formula> <tex-math notation="LaTeX">\sigma _{i} </tex-math></inline-formula> was very different for the two types of substrates.]]></description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2022.3157301</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antenna measurements ; Circuit design ; Conductivity ; Conductors ; Copper-clad substrate ; Dielectric measurement ; dielectric rod resonator ; Dielectric waveguides ; Dielectrics ; Excitation ; interface conductivity ; Loop antennas ; Measurement techniques ; Microwave frequencies ; Millimeter wave measurements ; Millimeter waves ; millimeter-wave ; nonradiative dielectric waveguide (NRD guide) ; Polytetrafluoroethylene ; Resonators ; Sapphire ; Single crystals ; Substrates ; surface conductivity</subject><ispartof>IEEE transactions on microwave theory and techniques, 2022-05, Vol.70 (5), p.2750-2761</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-fa15fd4bc708f99dcbdef287871e72aac70037aca33857a8792572f6acab29673</citedby><cites>FETCH-LOGICAL-c223t-fa15fd4bc708f99dcbdef287871e72aac70037aca33857a8792572f6acab29673</cites><orcidid>0000-0002-0835-7712 ; 0000-0001-7745-5327 ; 0000-0002-7775-093X ; 0000-0002-4414-0553</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9737687$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Hirayama, Naoki</creatorcontrib><creatorcontrib>Nakayama, Akira</creatorcontrib><creatorcontrib>Yoshikawa, Hiromichi</creatorcontrib><creatorcontrib>Shimizu, Takashi</creatorcontrib><creatorcontrib>Kogami, Yoshinori</creatorcontrib><title>Measurement Technique for Interface and Surface Conductivities at Millimeter-Wave Frequencies Using Dielectric Rod Resonator Excited by Nonradiative Dielectric Waveguide</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description><![CDATA[Herein, we propose a new technique for measuring interface and surface conductivities, <inline-formula> <tex-math notation="LaTeX">\sigma _{i} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\sigma _{s} </tex-math></inline-formula>, of circuit substrates separately at millimeter-wave frequencies using a TE<inline-formula> <tex-math notation="LaTeX">_{0m\delta } </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">m =1 </tex-math></inline-formula>, 2, <inline-formula> <tex-math notation="LaTeX">3, \ldots, \delta < 1 </tex-math></inline-formula>) mode single-crystal sapphire rod resonator excited via nonradiative dielectric waveguide (NRD guide). Here, <inline-formula> <tex-math notation="LaTeX">\sigma _{i} </tex-math></inline-formula> represents an effective conductivity of conductor at the dielectric side. On the other hand, <inline-formula> <tex-math notation="LaTeX">\sigma _{s} </tex-math></inline-formula> represents an effective conductivity at the shiny side of the conductor. Evaluating <inline-formula> <tex-math notation="LaTeX">\sigma _{i} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\sigma _{s} </tex-math></inline-formula> separately is essential for high-precision circuit design at microwave and millimeter-wave frequencies and the development of low-loss circuit substrates. The superiority of NRD guide excitation compared with the conventional loop antenna excitation was confirmed through both experiments and simulations for the dielectric resonator at millimeter-wave frequencies. The feasibility of the proposed technique was verified by measuring <inline-formula> <tex-math notation="LaTeX">\sigma _{i} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\sigma _{s} </tex-math></inline-formula> of the two types of commercially available copper-clad substrates, which were liquid-crystal-polymer-based and polytetrafluoroethylene-based substrates, at approximately 62, 74, and 80 GHz. In addition, we confirmed that these data were consistent with respect to the frequency with the measured results obtained using the conventional technique via loop antenna excitation at microwave frequencies, demonstrating the validity of the proposed technique. The measured results from 2 to 80 GHz showed that <inline-formula> <tex-math notation="LaTeX">\sigma _{i} </tex-math></inline-formula> had a smaller value than <inline-formula> <tex-math notation="LaTeX">\sigma _{s} </tex-math></inline-formula> and their values decreased with increasing frequency. Furthermore, it was found that the frequency dependence of <inline-formula> <tex-math notation="LaTeX">\sigma _{i} </tex-math></inline-formula> was very different for the two types of substrates.]]></description><subject>Antenna measurements</subject><subject>Circuit design</subject><subject>Conductivity</subject><subject>Conductors</subject><subject>Copper-clad substrate</subject><subject>Dielectric measurement</subject><subject>dielectric rod resonator</subject><subject>Dielectric waveguides</subject><subject>Dielectrics</subject><subject>Excitation</subject><subject>interface conductivity</subject><subject>Loop antennas</subject><subject>Measurement techniques</subject><subject>Microwave frequencies</subject><subject>Millimeter wave measurements</subject><subject>Millimeter waves</subject><subject>millimeter-wave</subject><subject>nonradiative dielectric waveguide (NRD guide)</subject><subject>Polytetrafluoroethylene</subject><subject>Resonators</subject><subject>Sapphire</subject><subject>Single crystals</subject><subject>Substrates</subject><subject>surface conductivity</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNUctKAzEUDaJgfXyAuAm4nppHZ5JZSrUqWIU64nJIkxuNtBlNMmI_yb80Q0Vc3dc553LvQeiEkjGlpD5v5k0zZoSxMael4ITuoBEtS1HUlSC7aEQIlUU9kWQfHcT4lstJSeQIfc9BxT7AGnzCDehX7z56wLYL-NYnCFZpwMob_Nhv82nnTa-T-3TJQcQq4blbrdwaMrh4Vp-AZwGyhNfD-Ck6_4IvHaxAp-A0XnQGLyB2XqW84upLuwQGLzf4vvNBGaeyMvwnDJIvvTNwhPasWkU4_o2H6Gl21UxviruH69vpxV2hGeOpsIqW1kyWWhBp69ropQHLpJCCgmBK5T7hQmnFuSyFkqJmpWC2yp0ly8_ih-hsq_seunxHTO1b1wefV7asqggtZc0GFN2idOhiDGDb9-DWKmxaStrBkXZwpB0caX8dyZzTLccBwB--FlxUUvAfzraLsw</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Hirayama, Naoki</creator><creator>Nakayama, Akira</creator><creator>Yoshikawa, Hiromichi</creator><creator>Shimizu, Takashi</creator><creator>Kogami, Yoshinori</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0835-7712</orcidid><orcidid>https://orcid.org/0000-0001-7745-5327</orcidid><orcidid>https://orcid.org/0000-0002-7775-093X</orcidid><orcidid>https://orcid.org/0000-0002-4414-0553</orcidid></search><sort><creationdate>202205</creationdate><title>Measurement Technique for Interface and Surface Conductivities at Millimeter-Wave Frequencies Using Dielectric Rod Resonator Excited by Nonradiative Dielectric Waveguide</title><author>Hirayama, Naoki ; Nakayama, Akira ; Yoshikawa, Hiromichi ; Shimizu, Takashi ; Kogami, Yoshinori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-fa15fd4bc708f99dcbdef287871e72aac70037aca33857a8792572f6acab29673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antenna measurements</topic><topic>Circuit design</topic><topic>Conductivity</topic><topic>Conductors</topic><topic>Copper-clad substrate</topic><topic>Dielectric measurement</topic><topic>dielectric rod resonator</topic><topic>Dielectric waveguides</topic><topic>Dielectrics</topic><topic>Excitation</topic><topic>interface conductivity</topic><topic>Loop antennas</topic><topic>Measurement techniques</topic><topic>Microwave frequencies</topic><topic>Millimeter wave measurements</topic><topic>Millimeter waves</topic><topic>millimeter-wave</topic><topic>nonradiative dielectric waveguide (NRD guide)</topic><topic>Polytetrafluoroethylene</topic><topic>Resonators</topic><topic>Sapphire</topic><topic>Single crystals</topic><topic>Substrates</topic><topic>surface conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirayama, Naoki</creatorcontrib><creatorcontrib>Nakayama, Akira</creatorcontrib><creatorcontrib>Yoshikawa, Hiromichi</creatorcontrib><creatorcontrib>Shimizu, Takashi</creatorcontrib><creatorcontrib>Kogami, Yoshinori</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirayama, Naoki</au><au>Nakayama, Akira</au><au>Yoshikawa, Hiromichi</au><au>Shimizu, Takashi</au><au>Kogami, Yoshinori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement Technique for Interface and Surface Conductivities at Millimeter-Wave Frequencies Using Dielectric Rod Resonator Excited by Nonradiative Dielectric Waveguide</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2022-05</date><risdate>2022</risdate><volume>70</volume><issue>5</issue><spage>2750</spage><epage>2761</epage><pages>2750-2761</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract><![CDATA[Herein, we propose a new technique for measuring interface and surface conductivities, <inline-formula> <tex-math notation="LaTeX">\sigma _{i} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\sigma _{s} </tex-math></inline-formula>, of circuit substrates separately at millimeter-wave frequencies using a TE<inline-formula> <tex-math notation="LaTeX">_{0m\delta } </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">m =1 </tex-math></inline-formula>, 2, <inline-formula> <tex-math notation="LaTeX">3, \ldots, \delta < 1 </tex-math></inline-formula>) mode single-crystal sapphire rod resonator excited via nonradiative dielectric waveguide (NRD guide). Here, <inline-formula> <tex-math notation="LaTeX">\sigma _{i} </tex-math></inline-formula> represents an effective conductivity of conductor at the dielectric side. On the other hand, <inline-formula> <tex-math notation="LaTeX">\sigma _{s} </tex-math></inline-formula> represents an effective conductivity at the shiny side of the conductor. Evaluating <inline-formula> <tex-math notation="LaTeX">\sigma _{i} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\sigma _{s} </tex-math></inline-formula> separately is essential for high-precision circuit design at microwave and millimeter-wave frequencies and the development of low-loss circuit substrates. The superiority of NRD guide excitation compared with the conventional loop antenna excitation was confirmed through both experiments and simulations for the dielectric resonator at millimeter-wave frequencies. The feasibility of the proposed technique was verified by measuring <inline-formula> <tex-math notation="LaTeX">\sigma _{i} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\sigma _{s} </tex-math></inline-formula> of the two types of commercially available copper-clad substrates, which were liquid-crystal-polymer-based and polytetrafluoroethylene-based substrates, at approximately 62, 74, and 80 GHz. In addition, we confirmed that these data were consistent with respect to the frequency with the measured results obtained using the conventional technique via loop antenna excitation at microwave frequencies, demonstrating the validity of the proposed technique. The measured results from 2 to 80 GHz showed that <inline-formula> <tex-math notation="LaTeX">\sigma _{i} </tex-math></inline-formula> had a smaller value than <inline-formula> <tex-math notation="LaTeX">\sigma _{s} </tex-math></inline-formula> and their values decreased with increasing frequency. Furthermore, it was found that the frequency dependence of <inline-formula> <tex-math notation="LaTeX">\sigma _{i} </tex-math></inline-formula> was very different for the two types of substrates.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMTT.2022.3157301</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0835-7712</orcidid><orcidid>https://orcid.org/0000-0001-7745-5327</orcidid><orcidid>https://orcid.org/0000-0002-7775-093X</orcidid><orcidid>https://orcid.org/0000-0002-4414-0553</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9480 |
ispartof | IEEE transactions on microwave theory and techniques, 2022-05, Vol.70 (5), p.2750-2761 |
issn | 0018-9480 1557-9670 |
language | eng |
recordid | cdi_ieee_primary_9737687 |
source | IEEE Xplore (Online service) |
subjects | Antenna measurements Circuit design Conductivity Conductors Copper-clad substrate Dielectric measurement dielectric rod resonator Dielectric waveguides Dielectrics Excitation interface conductivity Loop antennas Measurement techniques Microwave frequencies Millimeter wave measurements Millimeter waves millimeter-wave nonradiative dielectric waveguide (NRD guide) Polytetrafluoroethylene Resonators Sapphire Single crystals Substrates surface conductivity |
title | Measurement Technique for Interface and Surface Conductivities at Millimeter-Wave Frequencies Using Dielectric Rod Resonator Excited by Nonradiative Dielectric Waveguide |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A56%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20Technique%20for%20Interface%20and%20Surface%20Conductivities%20at%20Millimeter-Wave%20Frequencies%20Using%20Dielectric%20Rod%20Resonator%20Excited%20by%20Nonradiative%20Dielectric%20Waveguide&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Hirayama,%20Naoki&rft.date=2022-05&rft.volume=70&rft.issue=5&rft.spage=2750&rft.epage=2761&rft.pages=2750-2761&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2022.3157301&rft_dat=%3Cproquest_ieee_%3E2660158927%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c223t-fa15fd4bc708f99dcbdef287871e72aac70037aca33857a8792572f6acab29673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2660158927&rft_id=info:pmid/&rft_ieee_id=9737687&rfr_iscdi=true |