Loading…

Measurement Technique for Interface and Surface Conductivities at Millimeter-Wave Frequencies Using Dielectric Rod Resonator Excited by Nonradiative Dielectric Waveguide

Herein, we propose a new technique for measuring interface and surface conductivities, \sigma _{i} and \sigma _{s} , of circuit substrates separately at millimeter-wave frequencies using a TE _{0m\delta } ( m =1 , 2, 3, \ldots, \delta < 1 ) mode single-crystal sapphire rod resonator excited...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on microwave theory and techniques 2022-05, Vol.70 (5), p.2750-2761
Main Authors: Hirayama, Naoki, Nakayama, Akira, Yoshikawa, Hiromichi, Shimizu, Takashi, Kogami, Yoshinori
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c223t-fa15fd4bc708f99dcbdef287871e72aac70037aca33857a8792572f6acab29673
cites cdi_FETCH-LOGICAL-c223t-fa15fd4bc708f99dcbdef287871e72aac70037aca33857a8792572f6acab29673
container_end_page 2761
container_issue 5
container_start_page 2750
container_title IEEE transactions on microwave theory and techniques
container_volume 70
creator Hirayama, Naoki
Nakayama, Akira
Yoshikawa, Hiromichi
Shimizu, Takashi
Kogami, Yoshinori
description Herein, we propose a new technique for measuring interface and surface conductivities, \sigma _{i} and \sigma _{s} , of circuit substrates separately at millimeter-wave frequencies using a TE _{0m\delta } ( m =1 , 2, 3, \ldots, \delta < 1 ) mode single-crystal sapphire rod resonator excited via nonradiative dielectric waveguide (NRD guide). Here, \sigma _{i} represents an effective conductivity of conductor at the dielectric side. On the other hand, \sigma _{s} represents an effective conductivity at the shiny side of the conductor. Evaluating \sigma _{i} and \sigma _{s} separately is essential for high-precision circuit design at microwave and millimeter-wave frequencies and the development of low-loss circuit substrates. The superiority of NRD guide excitation compared with the conventional loop antenna excitation was confirmed through both experiments and simulations for the dielectric resonator at millimeter-wave frequencies. The feasibility of the proposed technique was verified by measuring \sigma _{i} and \sigma _{s} of the two types of commercially available copper-clad substrates, which were liquid-crystal-polymer-based and polytetrafluoroethylene-based substrates, at approximately 62, 74, and 80 GHz. In addition, we confirmed that these data were consistent with respect to the frequency with the measured results obtained using the conventional technique via loop antenna excitation at microwave frequencies, demonstrating the validity of the proposed technique. The measured results from 2 to 80 GHz showed that \sigma _{i} had a smaller value than \sig
doi_str_mv 10.1109/TMTT.2022.3157301
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9737687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9737687</ieee_id><sourcerecordid>2660158927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-fa15fd4bc708f99dcbdef287871e72aac70037aca33857a8792572f6acab29673</originalsourceid><addsrcrecordid>eNpNUctKAzEUDaJgfXyAuAm4nppHZ5JZSrUqWIU64nJIkxuNtBlNMmI_yb80Q0Vc3dc553LvQeiEkjGlpD5v5k0zZoSxMael4ITuoBEtS1HUlSC7aEQIlUU9kWQfHcT4lstJSeQIfc9BxT7AGnzCDehX7z56wLYL-NYnCFZpwMob_Nhv82nnTa-T-3TJQcQq4blbrdwaMrh4Vp-AZwGyhNfD-Ck6_4IvHaxAp-A0XnQGLyB2XqW84upLuwQGLzf4vvNBGaeyMvwnDJIvvTNwhPasWkU4_o2H6Gl21UxviruH69vpxV2hGeOpsIqW1kyWWhBp69ropQHLpJCCgmBK5T7hQmnFuSyFkqJmpWC2yp0ly8_ih-hsq_seunxHTO1b1wefV7asqggtZc0GFN2idOhiDGDb9-DWKmxaStrBkXZwpB0caX8dyZzTLccBwB--FlxUUvAfzraLsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660158927</pqid></control><display><type>article</type><title>Measurement Technique for Interface and Surface Conductivities at Millimeter-Wave Frequencies Using Dielectric Rod Resonator Excited by Nonradiative Dielectric Waveguide</title><source>IEEE Xplore (Online service)</source><creator>Hirayama, Naoki ; Nakayama, Akira ; Yoshikawa, Hiromichi ; Shimizu, Takashi ; Kogami, Yoshinori</creator><creatorcontrib>Hirayama, Naoki ; Nakayama, Akira ; Yoshikawa, Hiromichi ; Shimizu, Takashi ; Kogami, Yoshinori</creatorcontrib><description><![CDATA[Herein, we propose a new technique for measuring interface and surface conductivities, <inline-formula> <tex-math notation="LaTeX">\sigma _{i} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\sigma _{s} </tex-math></inline-formula>, of circuit substrates separately at millimeter-wave frequencies using a TE<inline-formula> <tex-math notation="LaTeX">_{0m\delta } </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">m =1 </tex-math></inline-formula>, 2, <inline-formula> <tex-math notation="LaTeX">3, \ldots, \delta < 1 </tex-math></inline-formula>) mode single-crystal sapphire rod resonator excited via nonradiative dielectric waveguide (NRD guide). Here, <inline-formula> <tex-math notation="LaTeX">\sigma _{i} </tex-math></inline-formula> represents an effective conductivity of conductor at the dielectric side. On the other hand, <inline-formula> <tex-math notation="LaTeX">\sigma _{s} </tex-math></inline-formula> represents an effective conductivity at the shiny side of the conductor. Evaluating <inline-formula> <tex-math notation="LaTeX">\sigma _{i} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\sigma _{s} </tex-math></inline-formula> separately is essential for high-precision circuit design at microwave and millimeter-wave frequencies and the development of low-loss circuit substrates. The superiority of NRD guide excitation compared with the conventional loop antenna excitation was confirmed through both experiments and simulations for the dielectric resonator at millimeter-wave frequencies. The feasibility of the proposed technique was verified by measuring <inline-formula> <tex-math notation="LaTeX">\sigma _{i} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\sigma _{s} </tex-math></inline-formula> of the two types of commercially available copper-clad substrates, which were liquid-crystal-polymer-based and polytetrafluoroethylene-based substrates, at approximately 62, 74, and 80 GHz. In addition, we confirmed that these data were consistent with respect to the frequency with the measured results obtained using the conventional technique via loop antenna excitation at microwave frequencies, demonstrating the validity of the proposed technique. The measured results from 2 to 80 GHz showed that <inline-formula> <tex-math notation="LaTeX">\sigma _{i} </tex-math></inline-formula> had a smaller value than <inline-formula> <tex-math notation="LaTeX">\sigma _{s} </tex-math></inline-formula> and their values decreased with increasing frequency. Furthermore, it was found that the frequency dependence of <inline-formula> <tex-math notation="LaTeX">\sigma _{i} </tex-math></inline-formula> was very different for the two types of substrates.]]></description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2022.3157301</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antenna measurements ; Circuit design ; Conductivity ; Conductors ; Copper-clad substrate ; Dielectric measurement ; dielectric rod resonator ; Dielectric waveguides ; Dielectrics ; Excitation ; interface conductivity ; Loop antennas ; Measurement techniques ; Microwave frequencies ; Millimeter wave measurements ; Millimeter waves ; millimeter-wave ; nonradiative dielectric waveguide (NRD guide) ; Polytetrafluoroethylene ; Resonators ; Sapphire ; Single crystals ; Substrates ; surface conductivity</subject><ispartof>IEEE transactions on microwave theory and techniques, 2022-05, Vol.70 (5), p.2750-2761</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-fa15fd4bc708f99dcbdef287871e72aac70037aca33857a8792572f6acab29673</citedby><cites>FETCH-LOGICAL-c223t-fa15fd4bc708f99dcbdef287871e72aac70037aca33857a8792572f6acab29673</cites><orcidid>0000-0002-0835-7712 ; 0000-0001-7745-5327 ; 0000-0002-7775-093X ; 0000-0002-4414-0553</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9737687$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Hirayama, Naoki</creatorcontrib><creatorcontrib>Nakayama, Akira</creatorcontrib><creatorcontrib>Yoshikawa, Hiromichi</creatorcontrib><creatorcontrib>Shimizu, Takashi</creatorcontrib><creatorcontrib>Kogami, Yoshinori</creatorcontrib><title>Measurement Technique for Interface and Surface Conductivities at Millimeter-Wave Frequencies Using Dielectric Rod Resonator Excited by Nonradiative Dielectric Waveguide</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description><![CDATA[Herein, we propose a new technique for measuring interface and surface conductivities, <inline-formula> <tex-math notation="LaTeX">\sigma _{i} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\sigma _{s} </tex-math></inline-formula>, of circuit substrates separately at millimeter-wave frequencies using a TE<inline-formula> <tex-math notation="LaTeX">_{0m\delta } </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">m =1 </tex-math></inline-formula>, 2, <inline-formula> <tex-math notation="LaTeX">3, \ldots, \delta < 1 </tex-math></inline-formula>) mode single-crystal sapphire rod resonator excited via nonradiative dielectric waveguide (NRD guide). Here, <inline-formula> <tex-math notation="LaTeX">\sigma _{i} </tex-math></inline-formula> represents an effective conductivity of conductor at the dielectric side. On the other hand, <inline-formula> <tex-math notation="LaTeX">\sigma _{s} </tex-math></inline-formula> represents an effective conductivity at the shiny side of the conductor. Evaluating <inline-formula> <tex-math notation="LaTeX">\sigma _{i} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\sigma _{s} </tex-math></inline-formula> separately is essential for high-precision circuit design at microwave and millimeter-wave frequencies and the development of low-loss circuit substrates. The superiority of NRD guide excitation compared with the conventional loop antenna excitation was confirmed through both experiments and simulations for the dielectric resonator at millimeter-wave frequencies. The feasibility of the proposed technique was verified by measuring <inline-formula> <tex-math notation="LaTeX">\sigma _{i} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\sigma _{s} </tex-math></inline-formula> of the two types of commercially available copper-clad substrates, which were liquid-crystal-polymer-based and polytetrafluoroethylene-based substrates, at approximately 62, 74, and 80 GHz. In addition, we confirmed that these data were consistent with respect to the frequency with the measured results obtained using the conventional technique via loop antenna excitation at microwave frequencies, demonstrating the validity of the proposed technique. The measured results from 2 to 80 GHz showed that <inline-formula> <tex-math notation="LaTeX">\sigma _{i} </tex-math></inline-formula> had a smaller value than <inline-formula> <tex-math notation="LaTeX">\sigma _{s} </tex-math></inline-formula> and their values decreased with increasing frequency. Furthermore, it was found that the frequency dependence of <inline-formula> <tex-math notation="LaTeX">\sigma _{i} </tex-math></inline-formula> was very different for the two types of substrates.]]></description><subject>Antenna measurements</subject><subject>Circuit design</subject><subject>Conductivity</subject><subject>Conductors</subject><subject>Copper-clad substrate</subject><subject>Dielectric measurement</subject><subject>dielectric rod resonator</subject><subject>Dielectric waveguides</subject><subject>Dielectrics</subject><subject>Excitation</subject><subject>interface conductivity</subject><subject>Loop antennas</subject><subject>Measurement techniques</subject><subject>Microwave frequencies</subject><subject>Millimeter wave measurements</subject><subject>Millimeter waves</subject><subject>millimeter-wave</subject><subject>nonradiative dielectric waveguide (NRD guide)</subject><subject>Polytetrafluoroethylene</subject><subject>Resonators</subject><subject>Sapphire</subject><subject>Single crystals</subject><subject>Substrates</subject><subject>surface conductivity</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNUctKAzEUDaJgfXyAuAm4nppHZ5JZSrUqWIU64nJIkxuNtBlNMmI_yb80Q0Vc3dc553LvQeiEkjGlpD5v5k0zZoSxMael4ITuoBEtS1HUlSC7aEQIlUU9kWQfHcT4lstJSeQIfc9BxT7AGnzCDehX7z56wLYL-NYnCFZpwMob_Nhv82nnTa-T-3TJQcQq4blbrdwaMrh4Vp-AZwGyhNfD-Ck6_4IvHaxAp-A0XnQGLyB2XqW84upLuwQGLzf4vvNBGaeyMvwnDJIvvTNwhPasWkU4_o2H6Gl21UxviruH69vpxV2hGeOpsIqW1kyWWhBp69ropQHLpJCCgmBK5T7hQmnFuSyFkqJmpWC2yp0ly8_ih-hsq_seunxHTO1b1wefV7asqggtZc0GFN2idOhiDGDb9-DWKmxaStrBkXZwpB0caX8dyZzTLccBwB--FlxUUvAfzraLsw</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Hirayama, Naoki</creator><creator>Nakayama, Akira</creator><creator>Yoshikawa, Hiromichi</creator><creator>Shimizu, Takashi</creator><creator>Kogami, Yoshinori</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0835-7712</orcidid><orcidid>https://orcid.org/0000-0001-7745-5327</orcidid><orcidid>https://orcid.org/0000-0002-7775-093X</orcidid><orcidid>https://orcid.org/0000-0002-4414-0553</orcidid></search><sort><creationdate>202205</creationdate><title>Measurement Technique for Interface and Surface Conductivities at Millimeter-Wave Frequencies Using Dielectric Rod Resonator Excited by Nonradiative Dielectric Waveguide</title><author>Hirayama, Naoki ; Nakayama, Akira ; Yoshikawa, Hiromichi ; Shimizu, Takashi ; Kogami, Yoshinori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-fa15fd4bc708f99dcbdef287871e72aac70037aca33857a8792572f6acab29673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antenna measurements</topic><topic>Circuit design</topic><topic>Conductivity</topic><topic>Conductors</topic><topic>Copper-clad substrate</topic><topic>Dielectric measurement</topic><topic>dielectric rod resonator</topic><topic>Dielectric waveguides</topic><topic>Dielectrics</topic><topic>Excitation</topic><topic>interface conductivity</topic><topic>Loop antennas</topic><topic>Measurement techniques</topic><topic>Microwave frequencies</topic><topic>Millimeter wave measurements</topic><topic>Millimeter waves</topic><topic>millimeter-wave</topic><topic>nonradiative dielectric waveguide (NRD guide)</topic><topic>Polytetrafluoroethylene</topic><topic>Resonators</topic><topic>Sapphire</topic><topic>Single crystals</topic><topic>Substrates</topic><topic>surface conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirayama, Naoki</creatorcontrib><creatorcontrib>Nakayama, Akira</creatorcontrib><creatorcontrib>Yoshikawa, Hiromichi</creatorcontrib><creatorcontrib>Shimizu, Takashi</creatorcontrib><creatorcontrib>Kogami, Yoshinori</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirayama, Naoki</au><au>Nakayama, Akira</au><au>Yoshikawa, Hiromichi</au><au>Shimizu, Takashi</au><au>Kogami, Yoshinori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement Technique for Interface and Surface Conductivities at Millimeter-Wave Frequencies Using Dielectric Rod Resonator Excited by Nonradiative Dielectric Waveguide</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2022-05</date><risdate>2022</risdate><volume>70</volume><issue>5</issue><spage>2750</spage><epage>2761</epage><pages>2750-2761</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract><![CDATA[Herein, we propose a new technique for measuring interface and surface conductivities, <inline-formula> <tex-math notation="LaTeX">\sigma _{i} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\sigma _{s} </tex-math></inline-formula>, of circuit substrates separately at millimeter-wave frequencies using a TE<inline-formula> <tex-math notation="LaTeX">_{0m\delta } </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">m =1 </tex-math></inline-formula>, 2, <inline-formula> <tex-math notation="LaTeX">3, \ldots, \delta < 1 </tex-math></inline-formula>) mode single-crystal sapphire rod resonator excited via nonradiative dielectric waveguide (NRD guide). Here, <inline-formula> <tex-math notation="LaTeX">\sigma _{i} </tex-math></inline-formula> represents an effective conductivity of conductor at the dielectric side. On the other hand, <inline-formula> <tex-math notation="LaTeX">\sigma _{s} </tex-math></inline-formula> represents an effective conductivity at the shiny side of the conductor. Evaluating <inline-formula> <tex-math notation="LaTeX">\sigma _{i} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\sigma _{s} </tex-math></inline-formula> separately is essential for high-precision circuit design at microwave and millimeter-wave frequencies and the development of low-loss circuit substrates. The superiority of NRD guide excitation compared with the conventional loop antenna excitation was confirmed through both experiments and simulations for the dielectric resonator at millimeter-wave frequencies. The feasibility of the proposed technique was verified by measuring <inline-formula> <tex-math notation="LaTeX">\sigma _{i} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\sigma _{s} </tex-math></inline-formula> of the two types of commercially available copper-clad substrates, which were liquid-crystal-polymer-based and polytetrafluoroethylene-based substrates, at approximately 62, 74, and 80 GHz. In addition, we confirmed that these data were consistent with respect to the frequency with the measured results obtained using the conventional technique via loop antenna excitation at microwave frequencies, demonstrating the validity of the proposed technique. The measured results from 2 to 80 GHz showed that <inline-formula> <tex-math notation="LaTeX">\sigma _{i} </tex-math></inline-formula> had a smaller value than <inline-formula> <tex-math notation="LaTeX">\sigma _{s} </tex-math></inline-formula> and their values decreased with increasing frequency. Furthermore, it was found that the frequency dependence of <inline-formula> <tex-math notation="LaTeX">\sigma _{i} </tex-math></inline-formula> was very different for the two types of substrates.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMTT.2022.3157301</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0835-7712</orcidid><orcidid>https://orcid.org/0000-0001-7745-5327</orcidid><orcidid>https://orcid.org/0000-0002-7775-093X</orcidid><orcidid>https://orcid.org/0000-0002-4414-0553</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9480
ispartof IEEE transactions on microwave theory and techniques, 2022-05, Vol.70 (5), p.2750-2761
issn 0018-9480
1557-9670
language eng
recordid cdi_ieee_primary_9737687
source IEEE Xplore (Online service)
subjects Antenna measurements
Circuit design
Conductivity
Conductors
Copper-clad substrate
Dielectric measurement
dielectric rod resonator
Dielectric waveguides
Dielectrics
Excitation
interface conductivity
Loop antennas
Measurement techniques
Microwave frequencies
Millimeter wave measurements
Millimeter waves
millimeter-wave
nonradiative dielectric waveguide (NRD guide)
Polytetrafluoroethylene
Resonators
Sapphire
Single crystals
Substrates
surface conductivity
title Measurement Technique for Interface and Surface Conductivities at Millimeter-Wave Frequencies Using Dielectric Rod Resonator Excited by Nonradiative Dielectric Waveguide
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A56%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20Technique%20for%20Interface%20and%20Surface%20Conductivities%20at%20Millimeter-Wave%20Frequencies%20Using%20Dielectric%20Rod%20Resonator%20Excited%20by%20Nonradiative%20Dielectric%20Waveguide&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Hirayama,%20Naoki&rft.date=2022-05&rft.volume=70&rft.issue=5&rft.spage=2750&rft.epage=2761&rft.pages=2750-2761&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2022.3157301&rft_dat=%3Cproquest_ieee_%3E2660158927%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c223t-fa15fd4bc708f99dcbdef287871e72aac70037aca33857a8792572f6acab29673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2660158927&rft_id=info:pmid/&rft_ieee_id=9737687&rfr_iscdi=true