Loading…

Experimental Benchmarking of Next-Gen Indoor Positioning Technologies (Unmodulated) Visible Light Positioning and Ultra-Wideband

Within the context of the Internet of Things (IoT), many applications require high-quality positioning services. As opposed to traditional technologies, the two most recent positioning solutions: 1) ultra-wideband (UWB) and 2) (unmodulated) visible light positioning [(u)VLP] are well suited to econo...

Full description

Saved in:
Bibliographic Details
Published in:IEEE internet of things journal 2022-09, Vol.9 (18), p.17858-17870
Main Authors: Bastiaens, Sander, Gerwen, Jono Vanhie-Van, Macoir, Nicola, Deprez, Kenneth, De Cock, Cedric, Joseph, Wout, De Poorter, Eli, Plets, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Within the context of the Internet of Things (IoT), many applications require high-quality positioning services. As opposed to traditional technologies, the two most recent positioning solutions: 1) ultra-wideband (UWB) and 2) (unmodulated) visible light positioning [(u)VLP] are well suited to economically supply centimeter-to-decimeter level accuracy. This manuscript benchmarks the 2-D positioning performance of an 8-anchor asymmetric double-sided two-way ranging (aSDS-TWR) UWB system and a 15-LED frequency-division multiple access (FDMA) received signal strength (RSS) (u)VLP system in terms of feasibility and accuracy. With extensive experimental data, collected at two heights in a 8 m by 6 m open zone equipped with a precise ground-truth system, it is demonstrated that both visible light positioning (VLP) and UWB already attain median and 90 th percentile positioning errors in the order of 5 and 10 cm in line-of-sight (LOS) conditions. An approximately 20-cm median accuracy can be obtained with uVLP, whose main benefit is it being infrastructureless and thus very inexpensive. The accuracy degradation effects of non-LOS (NLOS) on UWB/(u)VLP are highlighted with four scenarios, each consisting of a different configuration of metallic closets. For the considered setup, in 2-D and with minimal tilt of the object to be tracked, VLP outscores UWB in NLOS conditions, while for LOS scenarios similar results are obtained.
ISSN:2327-4662
2327-4662
DOI:10.1109/JIOT.2022.3161791