Loading…
Novel Uncertainty-Aware Deep Neuroevolution Algorithm to Quantify Tidal Forecasting
Tide refers to a phenomenon that causes the change of water level in oceans. Tidal level forecasting plays an important role in many real-world applications especially those related to oceanic and coastal areas. For instance, accurate forecasting of tidal level can significantly increase the vessels...
Saved in:
Published in: | IEEE transactions on industry applications 2022-05, Vol.58 (3), p.3324-3332 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-279cf24fb3f12f52b35765ddc529c792558567214d998cbeb53022a8a09f64fc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-279cf24fb3f12f52b35765ddc529c792558567214d998cbeb53022a8a09f64fc3 |
container_end_page | 3332 |
container_issue | 3 |
container_start_page | 3324 |
container_title | IEEE transactions on industry applications |
container_volume | 58 |
creator | Jalali, Seyed Mohammad Jafar Ahmadian, Sajad Noman, Md Kislu Khosravi, Abbas Islam, Syed Mohammed Shamsul Wang, Fei Catalao, Joaao P. S. |
description | Tide refers to a phenomenon that causes the change of water level in oceans. Tidal level forecasting plays an important role in many real-world applications especially those related to oceanic and coastal areas. For instance, accurate forecasting of tidal level can significantly increase the vessels' safety as an excessive level of tidal makes serious problems in the movement of vessels. In this work, we propose a deep learning-based prediction interval framework in order to model the forecasting uncertainties of tidal current datasets. The proposed model develops optimum prediction intervals (PIs) focused on the deep learning-based CNN-LSTM model (CLSTM), and nonparametric approach termed as the lower upper bound estimation (LUBE) model. Moreover, we develop a novel deep neuroevolution algorithm based on a two-stage modification of the gaining-sharing knowledge optimization algorithm to optimize the architecture of the CLSTM automatically without the procedure of trial and error. This leads to a decline in the complexity raises in designing manually the deep learning architectures, as well as an enhancement in the performance of the PIs. We also utilize coverage width criterion to establish an excellent correlation appropriately between both the PI coverage probability and PI normalized average width. We indicate the searching efficiency and high accuracy of our proposed framework named as MGSK-CLSTM-LUBE by examining over the practical collected tidal current datasets from the Bay of Fundy, NS, Canada. |
doi_str_mv | 10.1109/TIA.2022.3162186 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9741364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9741364</ieee_id><sourcerecordid>2667017736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-279cf24fb3f12f52b35765ddc529c792558567214d998cbeb53022a8a09f64fc3</originalsourceid><addsrcrecordid>eNo9kM9LwzAYhoMoOKd3wUvAc2d-NElzLNPpYEzE7RzSNJkZXTPTdLL_3sqGp_fyvN_H-wBwj9EEYySfVvNyQhAhE4o5wQW_ACMsqcwk5eISjBCSNJNS5tfgpuu2COGc4XwEPpfhYBu4bo2NSfs2HbPyR0cLn63dw6XtY7CH0PTJhxaWzSZEn752MAX40es2eXeEK1_rBs5CtEZ3ybebW3DldNPZu3OOwXr2spq-ZYv31_m0XGSGSJwyIqRxJHcVdZg4RirKBGd1bRiRRkjCWMG4IDivpSxMZStGh3260Eg6njtDx-DxdHcfw3dvu6S2oY_t8FIRzgXCQlA-UOhEmRi6Llqn9tHvdDwqjNSfOjWoU3_q1FndUHk4Vby19h-XIseU5_QX7M1p4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667017736</pqid></control><display><type>article</type><title>Novel Uncertainty-Aware Deep Neuroevolution Algorithm to Quantify Tidal Forecasting</title><source>IEEE Xplore (Online service)</source><creator>Jalali, Seyed Mohammad Jafar ; Ahmadian, Sajad ; Noman, Md Kislu ; Khosravi, Abbas ; Islam, Syed Mohammed Shamsul ; Wang, Fei ; Catalao, Joaao P. S.</creator><creatorcontrib>Jalali, Seyed Mohammad Jafar ; Ahmadian, Sajad ; Noman, Md Kislu ; Khosravi, Abbas ; Islam, Syed Mohammed Shamsul ; Wang, Fei ; Catalao, Joaao P. S.</creatorcontrib><description>Tide refers to a phenomenon that causes the change of water level in oceans. Tidal level forecasting plays an important role in many real-world applications especially those related to oceanic and coastal areas. For instance, accurate forecasting of tidal level can significantly increase the vessels' safety as an excessive level of tidal makes serious problems in the movement of vessels. In this work, we propose a deep learning-based prediction interval framework in order to model the forecasting uncertainties of tidal current datasets. The proposed model develops optimum prediction intervals (PIs) focused on the deep learning-based CNN-LSTM model (CLSTM), and nonparametric approach termed as the lower upper bound estimation (LUBE) model. Moreover, we develop a novel deep neuroevolution algorithm based on a two-stage modification of the gaining-sharing knowledge optimization algorithm to optimize the architecture of the CLSTM automatically without the procedure of trial and error. This leads to a decline in the complexity raises in designing manually the deep learning architectures, as well as an enhancement in the performance of the PIs. We also utilize coverage width criterion to establish an excellent correlation appropriately between both the PI coverage probability and PI normalized average width. We indicate the searching efficiency and high accuracy of our proposed framework named as MGSK-CLSTM-LUBE by examining over the practical collected tidal current datasets from the Bay of Fundy, NS, Canada.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2022.3162186</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Coastal zone ; Datasets ; Deep learning ; Deep neuroevolution (DNE) ; Forecasting ; Harmonic analysis ; Machine learning ; Mathematical models ; Ocean currents ; Oceans ; Optimization ; Prediction algorithms ; Predictive models ; tidal current forecasting ; Tidal currents ; Training ; Uncertainty ; uncertainty quantification ; Upper bounds ; Vessels ; Water level fluctuations ; Water levels</subject><ispartof>IEEE transactions on industry applications, 2022-05, Vol.58 (3), p.3324-3332</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-279cf24fb3f12f52b35765ddc529c792558567214d998cbeb53022a8a09f64fc3</citedby><cites>FETCH-LOGICAL-c291t-279cf24fb3f12f52b35765ddc529c792558567214d998cbeb53022a8a09f64fc3</cites><orcidid>0000-0001-6927-0744 ; 0000-0002-2105-3051 ; 0000-0002-7332-9726 ; 0000-0003-3565-2001 ; 0000-0002-3200-2903 ; 0000-0002-3080-3192</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9741364$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Jalali, Seyed Mohammad Jafar</creatorcontrib><creatorcontrib>Ahmadian, Sajad</creatorcontrib><creatorcontrib>Noman, Md Kislu</creatorcontrib><creatorcontrib>Khosravi, Abbas</creatorcontrib><creatorcontrib>Islam, Syed Mohammed Shamsul</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Catalao, Joaao P. S.</creatorcontrib><title>Novel Uncertainty-Aware Deep Neuroevolution Algorithm to Quantify Tidal Forecasting</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>Tide refers to a phenomenon that causes the change of water level in oceans. Tidal level forecasting plays an important role in many real-world applications especially those related to oceanic and coastal areas. For instance, accurate forecasting of tidal level can significantly increase the vessels' safety as an excessive level of tidal makes serious problems in the movement of vessels. In this work, we propose a deep learning-based prediction interval framework in order to model the forecasting uncertainties of tidal current datasets. The proposed model develops optimum prediction intervals (PIs) focused on the deep learning-based CNN-LSTM model (CLSTM), and nonparametric approach termed as the lower upper bound estimation (LUBE) model. Moreover, we develop a novel deep neuroevolution algorithm based on a two-stage modification of the gaining-sharing knowledge optimization algorithm to optimize the architecture of the CLSTM automatically without the procedure of trial and error. This leads to a decline in the complexity raises in designing manually the deep learning architectures, as well as an enhancement in the performance of the PIs. We also utilize coverage width criterion to establish an excellent correlation appropriately between both the PI coverage probability and PI normalized average width. We indicate the searching efficiency and high accuracy of our proposed framework named as MGSK-CLSTM-LUBE by examining over the practical collected tidal current datasets from the Bay of Fundy, NS, Canada.</description><subject>Algorithms</subject><subject>Coastal zone</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Deep neuroevolution (DNE)</subject><subject>Forecasting</subject><subject>Harmonic analysis</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Ocean currents</subject><subject>Oceans</subject><subject>Optimization</subject><subject>Prediction algorithms</subject><subject>Predictive models</subject><subject>tidal current forecasting</subject><subject>Tidal currents</subject><subject>Training</subject><subject>Uncertainty</subject><subject>uncertainty quantification</subject><subject>Upper bounds</subject><subject>Vessels</subject><subject>Water level fluctuations</subject><subject>Water levels</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kM9LwzAYhoMoOKd3wUvAc2d-NElzLNPpYEzE7RzSNJkZXTPTdLL_3sqGp_fyvN_H-wBwj9EEYySfVvNyQhAhE4o5wQW_ACMsqcwk5eISjBCSNJNS5tfgpuu2COGc4XwEPpfhYBu4bo2NSfs2HbPyR0cLn63dw6XtY7CH0PTJhxaWzSZEn752MAX40es2eXeEK1_rBs5CtEZ3ybebW3DldNPZu3OOwXr2spq-ZYv31_m0XGSGSJwyIqRxJHcVdZg4RirKBGd1bRiRRkjCWMG4IDivpSxMZStGh3260Eg6njtDx-DxdHcfw3dvu6S2oY_t8FIRzgXCQlA-UOhEmRi6Llqn9tHvdDwqjNSfOjWoU3_q1FndUHk4Vby19h-XIseU5_QX7M1p4g</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Jalali, Seyed Mohammad Jafar</creator><creator>Ahmadian, Sajad</creator><creator>Noman, Md Kislu</creator><creator>Khosravi, Abbas</creator><creator>Islam, Syed Mohammed Shamsul</creator><creator>Wang, Fei</creator><creator>Catalao, Joaao P. S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6927-0744</orcidid><orcidid>https://orcid.org/0000-0002-2105-3051</orcidid><orcidid>https://orcid.org/0000-0002-7332-9726</orcidid><orcidid>https://orcid.org/0000-0003-3565-2001</orcidid><orcidid>https://orcid.org/0000-0002-3200-2903</orcidid><orcidid>https://orcid.org/0000-0002-3080-3192</orcidid></search><sort><creationdate>20220501</creationdate><title>Novel Uncertainty-Aware Deep Neuroevolution Algorithm to Quantify Tidal Forecasting</title><author>Jalali, Seyed Mohammad Jafar ; Ahmadian, Sajad ; Noman, Md Kislu ; Khosravi, Abbas ; Islam, Syed Mohammed Shamsul ; Wang, Fei ; Catalao, Joaao P. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-279cf24fb3f12f52b35765ddc529c792558567214d998cbeb53022a8a09f64fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Coastal zone</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Deep neuroevolution (DNE)</topic><topic>Forecasting</topic><topic>Harmonic analysis</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Ocean currents</topic><topic>Oceans</topic><topic>Optimization</topic><topic>Prediction algorithms</topic><topic>Predictive models</topic><topic>tidal current forecasting</topic><topic>Tidal currents</topic><topic>Training</topic><topic>Uncertainty</topic><topic>uncertainty quantification</topic><topic>Upper bounds</topic><topic>Vessels</topic><topic>Water level fluctuations</topic><topic>Water levels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jalali, Seyed Mohammad Jafar</creatorcontrib><creatorcontrib>Ahmadian, Sajad</creatorcontrib><creatorcontrib>Noman, Md Kislu</creatorcontrib><creatorcontrib>Khosravi, Abbas</creatorcontrib><creatorcontrib>Islam, Syed Mohammed Shamsul</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Catalao, Joaao P. S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jalali, Seyed Mohammad Jafar</au><au>Ahmadian, Sajad</au><au>Noman, Md Kislu</au><au>Khosravi, Abbas</au><au>Islam, Syed Mohammed Shamsul</au><au>Wang, Fei</au><au>Catalao, Joaao P. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Uncertainty-Aware Deep Neuroevolution Algorithm to Quantify Tidal Forecasting</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>58</volume><issue>3</issue><spage>3324</spage><epage>3332</epage><pages>3324-3332</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>Tide refers to a phenomenon that causes the change of water level in oceans. Tidal level forecasting plays an important role in many real-world applications especially those related to oceanic and coastal areas. For instance, accurate forecasting of tidal level can significantly increase the vessels' safety as an excessive level of tidal makes serious problems in the movement of vessels. In this work, we propose a deep learning-based prediction interval framework in order to model the forecasting uncertainties of tidal current datasets. The proposed model develops optimum prediction intervals (PIs) focused on the deep learning-based CNN-LSTM model (CLSTM), and nonparametric approach termed as the lower upper bound estimation (LUBE) model. Moreover, we develop a novel deep neuroevolution algorithm based on a two-stage modification of the gaining-sharing knowledge optimization algorithm to optimize the architecture of the CLSTM automatically without the procedure of trial and error. This leads to a decline in the complexity raises in designing manually the deep learning architectures, as well as an enhancement in the performance of the PIs. We also utilize coverage width criterion to establish an excellent correlation appropriately between both the PI coverage probability and PI normalized average width. We indicate the searching efficiency and high accuracy of our proposed framework named as MGSK-CLSTM-LUBE by examining over the practical collected tidal current datasets from the Bay of Fundy, NS, Canada.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2022.3162186</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6927-0744</orcidid><orcidid>https://orcid.org/0000-0002-2105-3051</orcidid><orcidid>https://orcid.org/0000-0002-7332-9726</orcidid><orcidid>https://orcid.org/0000-0003-3565-2001</orcidid><orcidid>https://orcid.org/0000-0002-3200-2903</orcidid><orcidid>https://orcid.org/0000-0002-3080-3192</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0093-9994 |
ispartof | IEEE transactions on industry applications, 2022-05, Vol.58 (3), p.3324-3332 |
issn | 0093-9994 1939-9367 |
language | eng |
recordid | cdi_ieee_primary_9741364 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Coastal zone Datasets Deep learning Deep neuroevolution (DNE) Forecasting Harmonic analysis Machine learning Mathematical models Ocean currents Oceans Optimization Prediction algorithms Predictive models tidal current forecasting Tidal currents Training Uncertainty uncertainty quantification Upper bounds Vessels Water level fluctuations Water levels |
title | Novel Uncertainty-Aware Deep Neuroevolution Algorithm to Quantify Tidal Forecasting |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A09%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Uncertainty-Aware%20Deep%20Neuroevolution%20Algorithm%20to%20Quantify%20Tidal%20Forecasting&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Jalali,%20Seyed%20Mohammad%20Jafar&rft.date=2022-05-01&rft.volume=58&rft.issue=3&rft.spage=3324&rft.epage=3332&rft.pages=3324-3332&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2022.3162186&rft_dat=%3Cproquest_ieee_%3E2667017736%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-279cf24fb3f12f52b35765ddc529c792558567214d998cbeb53022a8a09f64fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2667017736&rft_id=info:pmid/&rft_ieee_id=9741364&rfr_iscdi=true |