Loading…

Novel Uncertainty-Aware Deep Neuroevolution Algorithm to Quantify Tidal Forecasting

Tide refers to a phenomenon that causes the change of water level in oceans. Tidal level forecasting plays an important role in many real-world applications especially those related to oceanic and coastal areas. For instance, accurate forecasting of tidal level can significantly increase the vessels...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industry applications 2022-05, Vol.58 (3), p.3324-3332
Main Authors: Jalali, Seyed Mohammad Jafar, Ahmadian, Sajad, Noman, Md Kislu, Khosravi, Abbas, Islam, Syed Mohammed Shamsul, Wang, Fei, Catalao, Joaao P. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-279cf24fb3f12f52b35765ddc529c792558567214d998cbeb53022a8a09f64fc3
cites cdi_FETCH-LOGICAL-c291t-279cf24fb3f12f52b35765ddc529c792558567214d998cbeb53022a8a09f64fc3
container_end_page 3332
container_issue 3
container_start_page 3324
container_title IEEE transactions on industry applications
container_volume 58
creator Jalali, Seyed Mohammad Jafar
Ahmadian, Sajad
Noman, Md Kislu
Khosravi, Abbas
Islam, Syed Mohammed Shamsul
Wang, Fei
Catalao, Joaao P. S.
description Tide refers to a phenomenon that causes the change of water level in oceans. Tidal level forecasting plays an important role in many real-world applications especially those related to oceanic and coastal areas. For instance, accurate forecasting of tidal level can significantly increase the vessels' safety as an excessive level of tidal makes serious problems in the movement of vessels. In this work, we propose a deep learning-based prediction interval framework in order to model the forecasting uncertainties of tidal current datasets. The proposed model develops optimum prediction intervals (PIs) focused on the deep learning-based CNN-LSTM model (CLSTM), and nonparametric approach termed as the lower upper bound estimation (LUBE) model. Moreover, we develop a novel deep neuroevolution algorithm based on a two-stage modification of the gaining-sharing knowledge optimization algorithm to optimize the architecture of the CLSTM automatically without the procedure of trial and error. This leads to a decline in the complexity raises in designing manually the deep learning architectures, as well as an enhancement in the performance of the PIs. We also utilize coverage width criterion to establish an excellent correlation appropriately between both the PI coverage probability and PI normalized average width. We indicate the searching efficiency and high accuracy of our proposed framework named as MGSK-CLSTM-LUBE by examining over the practical collected tidal current datasets from the Bay of Fundy, NS, Canada.
doi_str_mv 10.1109/TIA.2022.3162186
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9741364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9741364</ieee_id><sourcerecordid>2667017736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-279cf24fb3f12f52b35765ddc529c792558567214d998cbeb53022a8a09f64fc3</originalsourceid><addsrcrecordid>eNo9kM9LwzAYhoMoOKd3wUvAc2d-NElzLNPpYEzE7RzSNJkZXTPTdLL_3sqGp_fyvN_H-wBwj9EEYySfVvNyQhAhE4o5wQW_ACMsqcwk5eISjBCSNJNS5tfgpuu2COGc4XwEPpfhYBu4bo2NSfs2HbPyR0cLn63dw6XtY7CH0PTJhxaWzSZEn752MAX40es2eXeEK1_rBs5CtEZ3ybebW3DldNPZu3OOwXr2spq-ZYv31_m0XGSGSJwyIqRxJHcVdZg4RirKBGd1bRiRRkjCWMG4IDivpSxMZStGh3260Eg6njtDx-DxdHcfw3dvu6S2oY_t8FIRzgXCQlA-UOhEmRi6Llqn9tHvdDwqjNSfOjWoU3_q1FndUHk4Vby19h-XIseU5_QX7M1p4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667017736</pqid></control><display><type>article</type><title>Novel Uncertainty-Aware Deep Neuroevolution Algorithm to Quantify Tidal Forecasting</title><source>IEEE Xplore (Online service)</source><creator>Jalali, Seyed Mohammad Jafar ; Ahmadian, Sajad ; Noman, Md Kislu ; Khosravi, Abbas ; Islam, Syed Mohammed Shamsul ; Wang, Fei ; Catalao, Joaao P. S.</creator><creatorcontrib>Jalali, Seyed Mohammad Jafar ; Ahmadian, Sajad ; Noman, Md Kislu ; Khosravi, Abbas ; Islam, Syed Mohammed Shamsul ; Wang, Fei ; Catalao, Joaao P. S.</creatorcontrib><description>Tide refers to a phenomenon that causes the change of water level in oceans. Tidal level forecasting plays an important role in many real-world applications especially those related to oceanic and coastal areas. For instance, accurate forecasting of tidal level can significantly increase the vessels' safety as an excessive level of tidal makes serious problems in the movement of vessels. In this work, we propose a deep learning-based prediction interval framework in order to model the forecasting uncertainties of tidal current datasets. The proposed model develops optimum prediction intervals (PIs) focused on the deep learning-based CNN-LSTM model (CLSTM), and nonparametric approach termed as the lower upper bound estimation (LUBE) model. Moreover, we develop a novel deep neuroevolution algorithm based on a two-stage modification of the gaining-sharing knowledge optimization algorithm to optimize the architecture of the CLSTM automatically without the procedure of trial and error. This leads to a decline in the complexity raises in designing manually the deep learning architectures, as well as an enhancement in the performance of the PIs. We also utilize coverage width criterion to establish an excellent correlation appropriately between both the PI coverage probability and PI normalized average width. We indicate the searching efficiency and high accuracy of our proposed framework named as MGSK-CLSTM-LUBE by examining over the practical collected tidal current datasets from the Bay of Fundy, NS, Canada.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2022.3162186</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Coastal zone ; Datasets ; Deep learning ; Deep neuroevolution (DNE) ; Forecasting ; Harmonic analysis ; Machine learning ; Mathematical models ; Ocean currents ; Oceans ; Optimization ; Prediction algorithms ; Predictive models ; tidal current forecasting ; Tidal currents ; Training ; Uncertainty ; uncertainty quantification ; Upper bounds ; Vessels ; Water level fluctuations ; Water levels</subject><ispartof>IEEE transactions on industry applications, 2022-05, Vol.58 (3), p.3324-3332</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-279cf24fb3f12f52b35765ddc529c792558567214d998cbeb53022a8a09f64fc3</citedby><cites>FETCH-LOGICAL-c291t-279cf24fb3f12f52b35765ddc529c792558567214d998cbeb53022a8a09f64fc3</cites><orcidid>0000-0001-6927-0744 ; 0000-0002-2105-3051 ; 0000-0002-7332-9726 ; 0000-0003-3565-2001 ; 0000-0002-3200-2903 ; 0000-0002-3080-3192</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9741364$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Jalali, Seyed Mohammad Jafar</creatorcontrib><creatorcontrib>Ahmadian, Sajad</creatorcontrib><creatorcontrib>Noman, Md Kislu</creatorcontrib><creatorcontrib>Khosravi, Abbas</creatorcontrib><creatorcontrib>Islam, Syed Mohammed Shamsul</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Catalao, Joaao P. S.</creatorcontrib><title>Novel Uncertainty-Aware Deep Neuroevolution Algorithm to Quantify Tidal Forecasting</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>Tide refers to a phenomenon that causes the change of water level in oceans. Tidal level forecasting plays an important role in many real-world applications especially those related to oceanic and coastal areas. For instance, accurate forecasting of tidal level can significantly increase the vessels' safety as an excessive level of tidal makes serious problems in the movement of vessels. In this work, we propose a deep learning-based prediction interval framework in order to model the forecasting uncertainties of tidal current datasets. The proposed model develops optimum prediction intervals (PIs) focused on the deep learning-based CNN-LSTM model (CLSTM), and nonparametric approach termed as the lower upper bound estimation (LUBE) model. Moreover, we develop a novel deep neuroevolution algorithm based on a two-stage modification of the gaining-sharing knowledge optimization algorithm to optimize the architecture of the CLSTM automatically without the procedure of trial and error. This leads to a decline in the complexity raises in designing manually the deep learning architectures, as well as an enhancement in the performance of the PIs. We also utilize coverage width criterion to establish an excellent correlation appropriately between both the PI coverage probability and PI normalized average width. We indicate the searching efficiency and high accuracy of our proposed framework named as MGSK-CLSTM-LUBE by examining over the practical collected tidal current datasets from the Bay of Fundy, NS, Canada.</description><subject>Algorithms</subject><subject>Coastal zone</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Deep neuroevolution (DNE)</subject><subject>Forecasting</subject><subject>Harmonic analysis</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Ocean currents</subject><subject>Oceans</subject><subject>Optimization</subject><subject>Prediction algorithms</subject><subject>Predictive models</subject><subject>tidal current forecasting</subject><subject>Tidal currents</subject><subject>Training</subject><subject>Uncertainty</subject><subject>uncertainty quantification</subject><subject>Upper bounds</subject><subject>Vessels</subject><subject>Water level fluctuations</subject><subject>Water levels</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kM9LwzAYhoMoOKd3wUvAc2d-NElzLNPpYEzE7RzSNJkZXTPTdLL_3sqGp_fyvN_H-wBwj9EEYySfVvNyQhAhE4o5wQW_ACMsqcwk5eISjBCSNJNS5tfgpuu2COGc4XwEPpfhYBu4bo2NSfs2HbPyR0cLn63dw6XtY7CH0PTJhxaWzSZEn752MAX40es2eXeEK1_rBs5CtEZ3ybebW3DldNPZu3OOwXr2spq-ZYv31_m0XGSGSJwyIqRxJHcVdZg4RirKBGd1bRiRRkjCWMG4IDivpSxMZStGh3260Eg6njtDx-DxdHcfw3dvu6S2oY_t8FIRzgXCQlA-UOhEmRi6Llqn9tHvdDwqjNSfOjWoU3_q1FndUHk4Vby19h-XIseU5_QX7M1p4g</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Jalali, Seyed Mohammad Jafar</creator><creator>Ahmadian, Sajad</creator><creator>Noman, Md Kislu</creator><creator>Khosravi, Abbas</creator><creator>Islam, Syed Mohammed Shamsul</creator><creator>Wang, Fei</creator><creator>Catalao, Joaao P. S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6927-0744</orcidid><orcidid>https://orcid.org/0000-0002-2105-3051</orcidid><orcidid>https://orcid.org/0000-0002-7332-9726</orcidid><orcidid>https://orcid.org/0000-0003-3565-2001</orcidid><orcidid>https://orcid.org/0000-0002-3200-2903</orcidid><orcidid>https://orcid.org/0000-0002-3080-3192</orcidid></search><sort><creationdate>20220501</creationdate><title>Novel Uncertainty-Aware Deep Neuroevolution Algorithm to Quantify Tidal Forecasting</title><author>Jalali, Seyed Mohammad Jafar ; Ahmadian, Sajad ; Noman, Md Kislu ; Khosravi, Abbas ; Islam, Syed Mohammed Shamsul ; Wang, Fei ; Catalao, Joaao P. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-279cf24fb3f12f52b35765ddc529c792558567214d998cbeb53022a8a09f64fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Coastal zone</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Deep neuroevolution (DNE)</topic><topic>Forecasting</topic><topic>Harmonic analysis</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Ocean currents</topic><topic>Oceans</topic><topic>Optimization</topic><topic>Prediction algorithms</topic><topic>Predictive models</topic><topic>tidal current forecasting</topic><topic>Tidal currents</topic><topic>Training</topic><topic>Uncertainty</topic><topic>uncertainty quantification</topic><topic>Upper bounds</topic><topic>Vessels</topic><topic>Water level fluctuations</topic><topic>Water levels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jalali, Seyed Mohammad Jafar</creatorcontrib><creatorcontrib>Ahmadian, Sajad</creatorcontrib><creatorcontrib>Noman, Md Kislu</creatorcontrib><creatorcontrib>Khosravi, Abbas</creatorcontrib><creatorcontrib>Islam, Syed Mohammed Shamsul</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Catalao, Joaao P. S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jalali, Seyed Mohammad Jafar</au><au>Ahmadian, Sajad</au><au>Noman, Md Kislu</au><au>Khosravi, Abbas</au><au>Islam, Syed Mohammed Shamsul</au><au>Wang, Fei</au><au>Catalao, Joaao P. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Uncertainty-Aware Deep Neuroevolution Algorithm to Quantify Tidal Forecasting</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>58</volume><issue>3</issue><spage>3324</spage><epage>3332</epage><pages>3324-3332</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>Tide refers to a phenomenon that causes the change of water level in oceans. Tidal level forecasting plays an important role in many real-world applications especially those related to oceanic and coastal areas. For instance, accurate forecasting of tidal level can significantly increase the vessels' safety as an excessive level of tidal makes serious problems in the movement of vessels. In this work, we propose a deep learning-based prediction interval framework in order to model the forecasting uncertainties of tidal current datasets. The proposed model develops optimum prediction intervals (PIs) focused on the deep learning-based CNN-LSTM model (CLSTM), and nonparametric approach termed as the lower upper bound estimation (LUBE) model. Moreover, we develop a novel deep neuroevolution algorithm based on a two-stage modification of the gaining-sharing knowledge optimization algorithm to optimize the architecture of the CLSTM automatically without the procedure of trial and error. This leads to a decline in the complexity raises in designing manually the deep learning architectures, as well as an enhancement in the performance of the PIs. We also utilize coverage width criterion to establish an excellent correlation appropriately between both the PI coverage probability and PI normalized average width. We indicate the searching efficiency and high accuracy of our proposed framework named as MGSK-CLSTM-LUBE by examining over the practical collected tidal current datasets from the Bay of Fundy, NS, Canada.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2022.3162186</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6927-0744</orcidid><orcidid>https://orcid.org/0000-0002-2105-3051</orcidid><orcidid>https://orcid.org/0000-0002-7332-9726</orcidid><orcidid>https://orcid.org/0000-0003-3565-2001</orcidid><orcidid>https://orcid.org/0000-0002-3200-2903</orcidid><orcidid>https://orcid.org/0000-0002-3080-3192</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0093-9994
ispartof IEEE transactions on industry applications, 2022-05, Vol.58 (3), p.3324-3332
issn 0093-9994
1939-9367
language eng
recordid cdi_ieee_primary_9741364
source IEEE Xplore (Online service)
subjects Algorithms
Coastal zone
Datasets
Deep learning
Deep neuroevolution (DNE)
Forecasting
Harmonic analysis
Machine learning
Mathematical models
Ocean currents
Oceans
Optimization
Prediction algorithms
Predictive models
tidal current forecasting
Tidal currents
Training
Uncertainty
uncertainty quantification
Upper bounds
Vessels
Water level fluctuations
Water levels
title Novel Uncertainty-Aware Deep Neuroevolution Algorithm to Quantify Tidal Forecasting
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A09%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Uncertainty-Aware%20Deep%20Neuroevolution%20Algorithm%20to%20Quantify%20Tidal%20Forecasting&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Jalali,%20Seyed%20Mohammad%20Jafar&rft.date=2022-05-01&rft.volume=58&rft.issue=3&rft.spage=3324&rft.epage=3332&rft.pages=3324-3332&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2022.3162186&rft_dat=%3Cproquest_ieee_%3E2667017736%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-279cf24fb3f12f52b35765ddc529c792558567214d998cbeb53022a8a09f64fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2667017736&rft_id=info:pmid/&rft_ieee_id=9741364&rfr_iscdi=true