Loading…

R-PointHop: A Green, Accurate, and Unsupervised Point Cloud Registration Method

Inspired by the recent PointHop classification method, an unsupervised 3D point cloud registration method, called R-PointHop, is proposed in this work. R-PointHop first determines a local reference frame (LRF) for every point using its nearest neighbors and finds local attributes. Next, R-PointHop o...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2022, Vol.31, p.2710-2725
Main Authors: Kadam, Pranav, Zhang, Min, Liu, Shan, Kuo, C. -C. Jay
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c347t-42784249e4330f2c20ee4fca56cea18de18641878c847d8924113cfa1dbbed913
cites cdi_FETCH-LOGICAL-c347t-42784249e4330f2c20ee4fca56cea18de18641878c847d8924113cfa1dbbed913
container_end_page 2725
container_issue
container_start_page 2710
container_title IEEE transactions on image processing
container_volume 31
creator Kadam, Pranav
Zhang, Min
Liu, Shan
Kuo, C. -C. Jay
description Inspired by the recent PointHop classification method, an unsupervised 3D point cloud registration method, called R-PointHop, is proposed in this work. R-PointHop first determines a local reference frame (LRF) for every point using its nearest neighbors and finds local attributes. Next, R-PointHop obtains local-to-global hierarchical features by point downsampling, neighborhood expansion, attribute construction and dimensionality reduction steps. Thus, point correspondences are built in hierarchical feature space using the nearest neighbor rule. Afterwards, a subset of salient points with good correspondence is selected to estimate the 3D transformation. The use of the LRF allows for invariance of the hierarchical features of points with respect to rotation and translation, thus making R-PointHop more robust at building point correspondence, even when the rotation angles are large. Experiments are conducted on the 3DMatch, ModelNet40, and Stanford Bunny datasets, which demonstrate the effectiveness of R-PointHop for 3D point cloud registration. R-PointHop's model size and training time are an order of magnitude smaller than those of deep learning methods, and its registration errors are smaller, making it a green and accurate solution. Our codes are available on GitHub ( https://github.com/pranavkdm/R-PointHop ).
doi_str_mv 10.1109/TIP.2022.3160609
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9741387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9741387</ieee_id><sourcerecordid>2644009862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-42784249e4330f2c20ee4fca56cea18de18641878c847d8924113cfa1dbbed913</originalsourceid><addsrcrecordid>eNpdkN9LIzEQx4N4nD_u3gVBAr744PYyyexu4lspWoUeFdHnZZvM6kq7qcnuwf33prb64NMMzOc7M3wYOwExAhDmz-Pd_UgKKUcKClEIs8cOwSBkQqDcT73Iy6wENAfsKMZXIQBzKH6yA5UriYhwyOYP2b1vu_7Wr6_4mE8DUXfJx9YOoe7pkted409dHNYU_rWRHP-g-WTpB8cf6LmNfQJb3_G_1L9494v9aOplpN-7esyebq4fJ7fZbD69m4xnmVVY9hnKUqNEQ6iUaKSVgggbW-eFpRq0I9AFgi611Vg6bSQCKNvU4BYLcgbUMbvY7l0H_zZQ7KtVGy0tl3VHfoiVLBCFMLqQCT3_hr76IXTpuw2VS8zTjUSJLWWDjzFQU61Du6rD_wpEtZFdJdnVRna1k50iZ7vFw2JF7ivwaTcBp1ugJaKvsSnTSJfqHfMNgFY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645245847</pqid></control><display><type>article</type><title>R-PointHop: A Green, Accurate, and Unsupervised Point Cloud Registration Method</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Kadam, Pranav ; Zhang, Min ; Liu, Shan ; Kuo, C. -C. Jay</creator><creatorcontrib>Kadam, Pranav ; Zhang, Min ; Liu, Shan ; Kuo, C. -C. Jay</creatorcontrib><description>Inspired by the recent PointHop classification method, an unsupervised 3D point cloud registration method, called R-PointHop, is proposed in this work. R-PointHop first determines a local reference frame (LRF) for every point using its nearest neighbors and finds local attributes. Next, R-PointHop obtains local-to-global hierarchical features by point downsampling, neighborhood expansion, attribute construction and dimensionality reduction steps. Thus, point correspondences are built in hierarchical feature space using the nearest neighbor rule. Afterwards, a subset of salient points with good correspondence is selected to estimate the 3D transformation. The use of the LRF allows for invariance of the hierarchical features of points with respect to rotation and translation, thus making R-PointHop more robust at building point correspondence, even when the rotation angles are large. Experiments are conducted on the 3DMatch, ModelNet40, and Stanford Bunny datasets, which demonstrate the effectiveness of R-PointHop for 3D point cloud registration. R-PointHop's model size and training time are an order of magnitude smaller than those of deep learning methods, and its registration errors are smaller, making it a green and accurate solution. Our codes are available on GitHub ( https://github.com/pranavkdm/R-PointHop ).</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2022.3160609</identifier><identifier>PMID: 35324441</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>3D feature descriptor ; Deep learning ; Feature extraction ; local reference frame (LRF) ; Machine learning ; Point cloud compression ; Point cloud registration ; Principal component analysis ; Registration ; Rotation ; rotation invariance ; Task analysis ; Three dimensional models ; Three-dimensional displays ; Transforms</subject><ispartof>IEEE transactions on image processing, 2022, Vol.31, p.2710-2725</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-42784249e4330f2c20ee4fca56cea18de18641878c847d8924113cfa1dbbed913</citedby><cites>FETCH-LOGICAL-c347t-42784249e4330f2c20ee4fca56cea18de18641878c847d8924113cfa1dbbed913</cites><orcidid>0000-0001-7645-3506 ; 0000-0001-9474-5035 ; 0000-0002-6940-7146 ; 0000-0002-1442-1207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9741387$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4021,27921,27922,27923,54794</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35324441$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kadam, Pranav</creatorcontrib><creatorcontrib>Zhang, Min</creatorcontrib><creatorcontrib>Liu, Shan</creatorcontrib><creatorcontrib>Kuo, C. -C. Jay</creatorcontrib><title>R-PointHop: A Green, Accurate, and Unsupervised Point Cloud Registration Method</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Inspired by the recent PointHop classification method, an unsupervised 3D point cloud registration method, called R-PointHop, is proposed in this work. R-PointHop first determines a local reference frame (LRF) for every point using its nearest neighbors and finds local attributes. Next, R-PointHop obtains local-to-global hierarchical features by point downsampling, neighborhood expansion, attribute construction and dimensionality reduction steps. Thus, point correspondences are built in hierarchical feature space using the nearest neighbor rule. Afterwards, a subset of salient points with good correspondence is selected to estimate the 3D transformation. The use of the LRF allows for invariance of the hierarchical features of points with respect to rotation and translation, thus making R-PointHop more robust at building point correspondence, even when the rotation angles are large. Experiments are conducted on the 3DMatch, ModelNet40, and Stanford Bunny datasets, which demonstrate the effectiveness of R-PointHop for 3D point cloud registration. R-PointHop's model size and training time are an order of magnitude smaller than those of deep learning methods, and its registration errors are smaller, making it a green and accurate solution. Our codes are available on GitHub ( https://github.com/pranavkdm/R-PointHop ).</description><subject>3D feature descriptor</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>local reference frame (LRF)</subject><subject>Machine learning</subject><subject>Point cloud compression</subject><subject>Point cloud registration</subject><subject>Principal component analysis</subject><subject>Registration</subject><subject>Rotation</subject><subject>rotation invariance</subject><subject>Task analysis</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><subject>Transforms</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkN9LIzEQx4N4nD_u3gVBAr744PYyyexu4lspWoUeFdHnZZvM6kq7qcnuwf33prb64NMMzOc7M3wYOwExAhDmz-Pd_UgKKUcKClEIs8cOwSBkQqDcT73Iy6wENAfsKMZXIQBzKH6yA5UriYhwyOYP2b1vu_7Wr6_4mE8DUXfJx9YOoe7pkted409dHNYU_rWRHP-g-WTpB8cf6LmNfQJb3_G_1L9494v9aOplpN-7esyebq4fJ7fZbD69m4xnmVVY9hnKUqNEQ6iUaKSVgggbW-eFpRq0I9AFgi611Vg6bSQCKNvU4BYLcgbUMbvY7l0H_zZQ7KtVGy0tl3VHfoiVLBCFMLqQCT3_hr76IXTpuw2VS8zTjUSJLWWDjzFQU61Du6rD_wpEtZFdJdnVRna1k50iZ7vFw2JF7ivwaTcBp1ugJaKvsSnTSJfqHfMNgFY</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Kadam, Pranav</creator><creator>Zhang, Min</creator><creator>Liu, Shan</creator><creator>Kuo, C. -C. Jay</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7645-3506</orcidid><orcidid>https://orcid.org/0000-0001-9474-5035</orcidid><orcidid>https://orcid.org/0000-0002-6940-7146</orcidid><orcidid>https://orcid.org/0000-0002-1442-1207</orcidid></search><sort><creationdate>2022</creationdate><title>R-PointHop: A Green, Accurate, and Unsupervised Point Cloud Registration Method</title><author>Kadam, Pranav ; Zhang, Min ; Liu, Shan ; Kuo, C. -C. Jay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-42784249e4330f2c20ee4fca56cea18de18641878c847d8924113cfa1dbbed913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3D feature descriptor</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>local reference frame (LRF)</topic><topic>Machine learning</topic><topic>Point cloud compression</topic><topic>Point cloud registration</topic><topic>Principal component analysis</topic><topic>Registration</topic><topic>Rotation</topic><topic>rotation invariance</topic><topic>Task analysis</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kadam, Pranav</creatorcontrib><creatorcontrib>Zhang, Min</creatorcontrib><creatorcontrib>Liu, Shan</creatorcontrib><creatorcontrib>Kuo, C. -C. Jay</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kadam, Pranav</au><au>Zhang, Min</au><au>Liu, Shan</au><au>Kuo, C. -C. Jay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>R-PointHop: A Green, Accurate, and Unsupervised Point Cloud Registration Method</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2022</date><risdate>2022</risdate><volume>31</volume><spage>2710</spage><epage>2725</epage><pages>2710-2725</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Inspired by the recent PointHop classification method, an unsupervised 3D point cloud registration method, called R-PointHop, is proposed in this work. R-PointHop first determines a local reference frame (LRF) for every point using its nearest neighbors and finds local attributes. Next, R-PointHop obtains local-to-global hierarchical features by point downsampling, neighborhood expansion, attribute construction and dimensionality reduction steps. Thus, point correspondences are built in hierarchical feature space using the nearest neighbor rule. Afterwards, a subset of salient points with good correspondence is selected to estimate the 3D transformation. The use of the LRF allows for invariance of the hierarchical features of points with respect to rotation and translation, thus making R-PointHop more robust at building point correspondence, even when the rotation angles are large. Experiments are conducted on the 3DMatch, ModelNet40, and Stanford Bunny datasets, which demonstrate the effectiveness of R-PointHop for 3D point cloud registration. R-PointHop's model size and training time are an order of magnitude smaller than those of deep learning methods, and its registration errors are smaller, making it a green and accurate solution. Our codes are available on GitHub ( https://github.com/pranavkdm/R-PointHop ).</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35324441</pmid><doi>10.1109/TIP.2022.3160609</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7645-3506</orcidid><orcidid>https://orcid.org/0000-0001-9474-5035</orcidid><orcidid>https://orcid.org/0000-0002-6940-7146</orcidid><orcidid>https://orcid.org/0000-0002-1442-1207</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2022, Vol.31, p.2710-2725
issn 1057-7149
1941-0042
language eng
recordid cdi_ieee_primary_9741387
source IEEE Electronic Library (IEL) Journals
subjects 3D feature descriptor
Deep learning
Feature extraction
local reference frame (LRF)
Machine learning
Point cloud compression
Point cloud registration
Principal component analysis
Registration
Rotation
rotation invariance
Task analysis
Three dimensional models
Three-dimensional displays
Transforms
title R-PointHop: A Green, Accurate, and Unsupervised Point Cloud Registration Method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T15%3A09%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=R-PointHop:%20A%20Green,%20Accurate,%20and%20Unsupervised%20Point%20Cloud%20Registration%20Method&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Kadam,%20Pranav&rft.date=2022&rft.volume=31&rft.spage=2710&rft.epage=2725&rft.pages=2710-2725&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2022.3160609&rft_dat=%3Cproquest_ieee_%3E2644009862%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-42784249e4330f2c20ee4fca56cea18de18641878c847d8924113cfa1dbbed913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2645245847&rft_id=info:pmid/35324441&rft_ieee_id=9741387&rfr_iscdi=true