Loading…

DroneSense: The Identification, Segmentation, and Orientation Detection of Drones via Neural Networks

The growing ubiquity of drones has raised concerns over the ability of traditional air-space monitoring technologies to accurately characterise such vehicles. Here, we present a CNN using a decision tree and ensemble structure to fully characterise drones in flight. Our system determines the drone t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2022, Vol.10, p.38154-38164
Main Authors: Scholes, Stirling, Ruget, Alice, Mora-Martin, German, Zhu, Feng, Gyongy, Istvan, Leach, Jonathan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-1fc41d96ed0208cf9d2e6d737ac0d396a3fcddc588f7082444675fd10299df193
cites cdi_FETCH-LOGICAL-c408t-1fc41d96ed0208cf9d2e6d737ac0d396a3fcddc588f7082444675fd10299df193
container_end_page 38164
container_issue
container_start_page 38154
container_title IEEE access
container_volume 10
creator Scholes, Stirling
Ruget, Alice
Mora-Martin, German
Zhu, Feng
Gyongy, Istvan
Leach, Jonathan
description The growing ubiquity of drones has raised concerns over the ability of traditional air-space monitoring technologies to accurately characterise such vehicles. Here, we present a CNN using a decision tree and ensemble structure to fully characterise drones in flight. Our system determines the drone type, orientation (in terms of pitch, roll, and yaw), and performs segmentation to classify different body parts (engines, body, and camera). We also provide a computer model for the rapid generation of large quantities of accurately labelled photo-realistic training data and demonstrate that this data is of sufficient fidelity to allow the system to accurately characterise real drones in flight. Our network will provide a valuable tool in the image processing chain where it may build upon existing drone detection technologies to provide complete drone characterisation over wide areas.
doi_str_mv 10.1109/ACCESS.2022.3162866
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9743918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9743918</ieee_id><doaj_id>oai_doaj_org_article_01ad8362fb63425b9bde0b89332dfa56</doaj_id><sourcerecordid>2653372320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-1fc41d96ed0208cf9d2e6d737ac0d396a3fcddc588f7082444675fd10299df193</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIVNAv4BKJKym2N3Fsbqi8KlVwKJwt116DSxuDnYL4e9KmVOxldkc7sytNlp1RMqKUyMvr8fh2NhsxwtgIKGeC84NswCiXBVTAD__1x9kwpQXpSnRUVQ8yvImhwRk2Ca_y5zfMJxab1jtvdOtDc5HP8HXVMbtJNzZ_iv6PyG-wRbPtgsu3Vin_8jp_xHXUyw7a7xDf02l25PQy4XCHJ9nL3e3z-KGYPt1PxtfTwpREtAV1pqRWcrSEEWGctAy5raHWhliQXIMz1ppKCFcTwcqy5HXlLCVMSuuohJNs0vvaoBfqI_qVjj8qaK-2RIivSsfWmyUqQrUVwJmbcyhZNZdzi2QuJACzTle88zrvvT5i-FxjatUirGPTva8YrwBqBox0W9BvmRhSiuj2VylRm3hUH4_axKN28XSqs17lEXGvkHUJkgr4BRrXi2c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2653372320</pqid></control><display><type>article</type><title>DroneSense: The Identification, Segmentation, and Orientation Detection of Drones via Neural Networks</title><source>IEEE Open Access Journals</source><creator>Scholes, Stirling ; Ruget, Alice ; Mora-Martin, German ; Zhu, Feng ; Gyongy, Istvan ; Leach, Jonathan</creator><creatorcontrib>Scholes, Stirling ; Ruget, Alice ; Mora-Martin, German ; Zhu, Feng ; Gyongy, Istvan ; Leach, Jonathan</creatorcontrib><description>The growing ubiquity of drones has raised concerns over the ability of traditional air-space monitoring technologies to accurately characterise such vehicles. Here, we present a CNN using a decision tree and ensemble structure to fully characterise drones in flight. Our system determines the drone type, orientation (in terms of pitch, roll, and yaw), and performs segmentation to classify different body parts (engines, body, and camera). We also provide a computer model for the rapid generation of large quantities of accurately labelled photo-realistic training data and demonstrate that this data is of sufficient fidelity to allow the system to accurately characterise real drones in flight. Our network will provide a valuable tool in the image processing chain where it may build upon existing drone detection technologies to provide complete drone characterisation over wide areas.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3162866</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Air monitoring ; Airspace ; Body parts ; Cameras ; Convolutional neural network ; Decision trees ; Drones ; Engines ; Feature extraction ; Image processing ; Image segmentation ; Laser radar ; Optical imaging ; orientation detection ; Pitch (inclination) ; pose ; Rolling motion ; segmentation ; Yaw</subject><ispartof>IEEE access, 2022, Vol.10, p.38154-38164</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-1fc41d96ed0208cf9d2e6d737ac0d396a3fcddc588f7082444675fd10299df193</citedby><cites>FETCH-LOGICAL-c408t-1fc41d96ed0208cf9d2e6d737ac0d396a3fcddc588f7082444675fd10299df193</cites><orcidid>0000-0003-2038-063X ; 0000-0003-3561-4953 ; 0000-0001-6280-2760</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9743918$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Scholes, Stirling</creatorcontrib><creatorcontrib>Ruget, Alice</creatorcontrib><creatorcontrib>Mora-Martin, German</creatorcontrib><creatorcontrib>Zhu, Feng</creatorcontrib><creatorcontrib>Gyongy, Istvan</creatorcontrib><creatorcontrib>Leach, Jonathan</creatorcontrib><title>DroneSense: The Identification, Segmentation, and Orientation Detection of Drones via Neural Networks</title><title>IEEE access</title><addtitle>Access</addtitle><description>The growing ubiquity of drones has raised concerns over the ability of traditional air-space monitoring technologies to accurately characterise such vehicles. Here, we present a CNN using a decision tree and ensemble structure to fully characterise drones in flight. Our system determines the drone type, orientation (in terms of pitch, roll, and yaw), and performs segmentation to classify different body parts (engines, body, and camera). We also provide a computer model for the rapid generation of large quantities of accurately labelled photo-realistic training data and demonstrate that this data is of sufficient fidelity to allow the system to accurately characterise real drones in flight. Our network will provide a valuable tool in the image processing chain where it may build upon existing drone detection technologies to provide complete drone characterisation over wide areas.</description><subject>Air monitoring</subject><subject>Airspace</subject><subject>Body parts</subject><subject>Cameras</subject><subject>Convolutional neural network</subject><subject>Decision trees</subject><subject>Drones</subject><subject>Engines</subject><subject>Feature extraction</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Laser radar</subject><subject>Optical imaging</subject><subject>orientation detection</subject><subject>Pitch (inclination)</subject><subject>pose</subject><subject>Rolling motion</subject><subject>segmentation</subject><subject>Yaw</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIVNAv4BKJKym2N3Fsbqi8KlVwKJwt116DSxuDnYL4e9KmVOxldkc7sytNlp1RMqKUyMvr8fh2NhsxwtgIKGeC84NswCiXBVTAD__1x9kwpQXpSnRUVQ8yvImhwRk2Ca_y5zfMJxab1jtvdOtDc5HP8HXVMbtJNzZ_iv6PyG-wRbPtgsu3Vin_8jp_xHXUyw7a7xDf02l25PQy4XCHJ9nL3e3z-KGYPt1PxtfTwpREtAV1pqRWcrSEEWGctAy5raHWhliQXIMz1ppKCFcTwcqy5HXlLCVMSuuohJNs0vvaoBfqI_qVjj8qaK-2RIivSsfWmyUqQrUVwJmbcyhZNZdzi2QuJACzTle88zrvvT5i-FxjatUirGPTva8YrwBqBox0W9BvmRhSiuj2VylRm3hUH4_axKN28XSqs17lEXGvkHUJkgr4BRrXi2c</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Scholes, Stirling</creator><creator>Ruget, Alice</creator><creator>Mora-Martin, German</creator><creator>Zhu, Feng</creator><creator>Gyongy, Istvan</creator><creator>Leach, Jonathan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2038-063X</orcidid><orcidid>https://orcid.org/0000-0003-3561-4953</orcidid><orcidid>https://orcid.org/0000-0001-6280-2760</orcidid></search><sort><creationdate>2022</creationdate><title>DroneSense: The Identification, Segmentation, and Orientation Detection of Drones via Neural Networks</title><author>Scholes, Stirling ; Ruget, Alice ; Mora-Martin, German ; Zhu, Feng ; Gyongy, Istvan ; Leach, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-1fc41d96ed0208cf9d2e6d737ac0d396a3fcddc588f7082444675fd10299df193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Air monitoring</topic><topic>Airspace</topic><topic>Body parts</topic><topic>Cameras</topic><topic>Convolutional neural network</topic><topic>Decision trees</topic><topic>Drones</topic><topic>Engines</topic><topic>Feature extraction</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Laser radar</topic><topic>Optical imaging</topic><topic>orientation detection</topic><topic>Pitch (inclination)</topic><topic>pose</topic><topic>Rolling motion</topic><topic>segmentation</topic><topic>Yaw</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scholes, Stirling</creatorcontrib><creatorcontrib>Ruget, Alice</creatorcontrib><creatorcontrib>Mora-Martin, German</creatorcontrib><creatorcontrib>Zhu, Feng</creatorcontrib><creatorcontrib>Gyongy, Istvan</creatorcontrib><creatorcontrib>Leach, Jonathan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals (DOAJ)</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scholes, Stirling</au><au>Ruget, Alice</au><au>Mora-Martin, German</au><au>Zhu, Feng</au><au>Gyongy, Istvan</au><au>Leach, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DroneSense: The Identification, Segmentation, and Orientation Detection of Drones via Neural Networks</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>38154</spage><epage>38164</epage><pages>38154-38164</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The growing ubiquity of drones has raised concerns over the ability of traditional air-space monitoring technologies to accurately characterise such vehicles. Here, we present a CNN using a decision tree and ensemble structure to fully characterise drones in flight. Our system determines the drone type, orientation (in terms of pitch, roll, and yaw), and performs segmentation to classify different body parts (engines, body, and camera). We also provide a computer model for the rapid generation of large quantities of accurately labelled photo-realistic training data and demonstrate that this data is of sufficient fidelity to allow the system to accurately characterise real drones in flight. Our network will provide a valuable tool in the image processing chain where it may build upon existing drone detection technologies to provide complete drone characterisation over wide areas.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3162866</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2038-063X</orcidid><orcidid>https://orcid.org/0000-0003-3561-4953</orcidid><orcidid>https://orcid.org/0000-0001-6280-2760</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.38154-38164
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9743918
source IEEE Open Access Journals
subjects Air monitoring
Airspace
Body parts
Cameras
Convolutional neural network
Decision trees
Drones
Engines
Feature extraction
Image processing
Image segmentation
Laser radar
Optical imaging
orientation detection
Pitch (inclination)
pose
Rolling motion
segmentation
Yaw
title DroneSense: The Identification, Segmentation, and Orientation Detection of Drones via Neural Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A19%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DroneSense:%20The%20Identification,%20Segmentation,%20and%20Orientation%20Detection%20of%20Drones%20via%20Neural%20Networks&rft.jtitle=IEEE%20access&rft.au=Scholes,%20Stirling&rft.date=2022&rft.volume=10&rft.spage=38154&rft.epage=38164&rft.pages=38154-38164&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3162866&rft_dat=%3Cproquest_ieee_%3E2653372320%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-1fc41d96ed0208cf9d2e6d737ac0d396a3fcddc588f7082444675fd10299df193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2653372320&rft_id=info:pmid/&rft_ieee_id=9743918&rfr_iscdi=true