Loading…
DroneSense: The Identification, Segmentation, and Orientation Detection of Drones via Neural Networks
The growing ubiquity of drones has raised concerns over the ability of traditional air-space monitoring technologies to accurately characterise such vehicles. Here, we present a CNN using a decision tree and ensemble structure to fully characterise drones in flight. Our system determines the drone t...
Saved in:
Published in: | IEEE access 2022, Vol.10, p.38154-38164 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-1fc41d96ed0208cf9d2e6d737ac0d396a3fcddc588f7082444675fd10299df193 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-1fc41d96ed0208cf9d2e6d737ac0d396a3fcddc588f7082444675fd10299df193 |
container_end_page | 38164 |
container_issue | |
container_start_page | 38154 |
container_title | IEEE access |
container_volume | 10 |
creator | Scholes, Stirling Ruget, Alice Mora-Martin, German Zhu, Feng Gyongy, Istvan Leach, Jonathan |
description | The growing ubiquity of drones has raised concerns over the ability of traditional air-space monitoring technologies to accurately characterise such vehicles. Here, we present a CNN using a decision tree and ensemble structure to fully characterise drones in flight. Our system determines the drone type, orientation (in terms of pitch, roll, and yaw), and performs segmentation to classify different body parts (engines, body, and camera). We also provide a computer model for the rapid generation of large quantities of accurately labelled photo-realistic training data and demonstrate that this data is of sufficient fidelity to allow the system to accurately characterise real drones in flight. Our network will provide a valuable tool in the image processing chain where it may build upon existing drone detection technologies to provide complete drone characterisation over wide areas. |
doi_str_mv | 10.1109/ACCESS.2022.3162866 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9743918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9743918</ieee_id><doaj_id>oai_doaj_org_article_01ad8362fb63425b9bde0b89332dfa56</doaj_id><sourcerecordid>2653372320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-1fc41d96ed0208cf9d2e6d737ac0d396a3fcddc588f7082444675fd10299df193</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIVNAv4BKJKym2N3Fsbqi8KlVwKJwt116DSxuDnYL4e9KmVOxldkc7sytNlp1RMqKUyMvr8fh2NhsxwtgIKGeC84NswCiXBVTAD__1x9kwpQXpSnRUVQ8yvImhwRk2Ca_y5zfMJxab1jtvdOtDc5HP8HXVMbtJNzZ_iv6PyG-wRbPtgsu3Vin_8jp_xHXUyw7a7xDf02l25PQy4XCHJ9nL3e3z-KGYPt1PxtfTwpREtAV1pqRWcrSEEWGctAy5raHWhliQXIMz1ppKCFcTwcqy5HXlLCVMSuuohJNs0vvaoBfqI_qVjj8qaK-2RIivSsfWmyUqQrUVwJmbcyhZNZdzi2QuJACzTle88zrvvT5i-FxjatUirGPTva8YrwBqBox0W9BvmRhSiuj2VylRm3hUH4_axKN28XSqs17lEXGvkHUJkgr4BRrXi2c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2653372320</pqid></control><display><type>article</type><title>DroneSense: The Identification, Segmentation, and Orientation Detection of Drones via Neural Networks</title><source>IEEE Open Access Journals</source><creator>Scholes, Stirling ; Ruget, Alice ; Mora-Martin, German ; Zhu, Feng ; Gyongy, Istvan ; Leach, Jonathan</creator><creatorcontrib>Scholes, Stirling ; Ruget, Alice ; Mora-Martin, German ; Zhu, Feng ; Gyongy, Istvan ; Leach, Jonathan</creatorcontrib><description>The growing ubiquity of drones has raised concerns over the ability of traditional air-space monitoring technologies to accurately characterise such vehicles. Here, we present a CNN using a decision tree and ensemble structure to fully characterise drones in flight. Our system determines the drone type, orientation (in terms of pitch, roll, and yaw), and performs segmentation to classify different body parts (engines, body, and camera). We also provide a computer model for the rapid generation of large quantities of accurately labelled photo-realistic training data and demonstrate that this data is of sufficient fidelity to allow the system to accurately characterise real drones in flight. Our network will provide a valuable tool in the image processing chain where it may build upon existing drone detection technologies to provide complete drone characterisation over wide areas.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3162866</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Air monitoring ; Airspace ; Body parts ; Cameras ; Convolutional neural network ; Decision trees ; Drones ; Engines ; Feature extraction ; Image processing ; Image segmentation ; Laser radar ; Optical imaging ; orientation detection ; Pitch (inclination) ; pose ; Rolling motion ; segmentation ; Yaw</subject><ispartof>IEEE access, 2022, Vol.10, p.38154-38164</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-1fc41d96ed0208cf9d2e6d737ac0d396a3fcddc588f7082444675fd10299df193</citedby><cites>FETCH-LOGICAL-c408t-1fc41d96ed0208cf9d2e6d737ac0d396a3fcddc588f7082444675fd10299df193</cites><orcidid>0000-0003-2038-063X ; 0000-0003-3561-4953 ; 0000-0001-6280-2760</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9743918$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Scholes, Stirling</creatorcontrib><creatorcontrib>Ruget, Alice</creatorcontrib><creatorcontrib>Mora-Martin, German</creatorcontrib><creatorcontrib>Zhu, Feng</creatorcontrib><creatorcontrib>Gyongy, Istvan</creatorcontrib><creatorcontrib>Leach, Jonathan</creatorcontrib><title>DroneSense: The Identification, Segmentation, and Orientation Detection of Drones via Neural Networks</title><title>IEEE access</title><addtitle>Access</addtitle><description>The growing ubiquity of drones has raised concerns over the ability of traditional air-space monitoring technologies to accurately characterise such vehicles. Here, we present a CNN using a decision tree and ensemble structure to fully characterise drones in flight. Our system determines the drone type, orientation (in terms of pitch, roll, and yaw), and performs segmentation to classify different body parts (engines, body, and camera). We also provide a computer model for the rapid generation of large quantities of accurately labelled photo-realistic training data and demonstrate that this data is of sufficient fidelity to allow the system to accurately characterise real drones in flight. Our network will provide a valuable tool in the image processing chain where it may build upon existing drone detection technologies to provide complete drone characterisation over wide areas.</description><subject>Air monitoring</subject><subject>Airspace</subject><subject>Body parts</subject><subject>Cameras</subject><subject>Convolutional neural network</subject><subject>Decision trees</subject><subject>Drones</subject><subject>Engines</subject><subject>Feature extraction</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Laser radar</subject><subject>Optical imaging</subject><subject>orientation detection</subject><subject>Pitch (inclination)</subject><subject>pose</subject><subject>Rolling motion</subject><subject>segmentation</subject><subject>Yaw</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIVNAv4BKJKym2N3Fsbqi8KlVwKJwt116DSxuDnYL4e9KmVOxldkc7sytNlp1RMqKUyMvr8fh2NhsxwtgIKGeC84NswCiXBVTAD__1x9kwpQXpSnRUVQ8yvImhwRk2Ca_y5zfMJxab1jtvdOtDc5HP8HXVMbtJNzZ_iv6PyG-wRbPtgsu3Vin_8jp_xHXUyw7a7xDf02l25PQy4XCHJ9nL3e3z-KGYPt1PxtfTwpREtAV1pqRWcrSEEWGctAy5raHWhliQXIMz1ppKCFcTwcqy5HXlLCVMSuuohJNs0vvaoBfqI_qVjj8qaK-2RIivSsfWmyUqQrUVwJmbcyhZNZdzi2QuJACzTle88zrvvT5i-FxjatUirGPTva8YrwBqBox0W9BvmRhSiuj2VylRm3hUH4_axKN28XSqs17lEXGvkHUJkgr4BRrXi2c</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Scholes, Stirling</creator><creator>Ruget, Alice</creator><creator>Mora-Martin, German</creator><creator>Zhu, Feng</creator><creator>Gyongy, Istvan</creator><creator>Leach, Jonathan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2038-063X</orcidid><orcidid>https://orcid.org/0000-0003-3561-4953</orcidid><orcidid>https://orcid.org/0000-0001-6280-2760</orcidid></search><sort><creationdate>2022</creationdate><title>DroneSense: The Identification, Segmentation, and Orientation Detection of Drones via Neural Networks</title><author>Scholes, Stirling ; Ruget, Alice ; Mora-Martin, German ; Zhu, Feng ; Gyongy, Istvan ; Leach, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-1fc41d96ed0208cf9d2e6d737ac0d396a3fcddc588f7082444675fd10299df193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Air monitoring</topic><topic>Airspace</topic><topic>Body parts</topic><topic>Cameras</topic><topic>Convolutional neural network</topic><topic>Decision trees</topic><topic>Drones</topic><topic>Engines</topic><topic>Feature extraction</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Laser radar</topic><topic>Optical imaging</topic><topic>orientation detection</topic><topic>Pitch (inclination)</topic><topic>pose</topic><topic>Rolling motion</topic><topic>segmentation</topic><topic>Yaw</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scholes, Stirling</creatorcontrib><creatorcontrib>Ruget, Alice</creatorcontrib><creatorcontrib>Mora-Martin, German</creatorcontrib><creatorcontrib>Zhu, Feng</creatorcontrib><creatorcontrib>Gyongy, Istvan</creatorcontrib><creatorcontrib>Leach, Jonathan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals (DOAJ)</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scholes, Stirling</au><au>Ruget, Alice</au><au>Mora-Martin, German</au><au>Zhu, Feng</au><au>Gyongy, Istvan</au><au>Leach, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DroneSense: The Identification, Segmentation, and Orientation Detection of Drones via Neural Networks</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>38154</spage><epage>38164</epage><pages>38154-38164</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The growing ubiquity of drones has raised concerns over the ability of traditional air-space monitoring technologies to accurately characterise such vehicles. Here, we present a CNN using a decision tree and ensemble structure to fully characterise drones in flight. Our system determines the drone type, orientation (in terms of pitch, roll, and yaw), and performs segmentation to classify different body parts (engines, body, and camera). We also provide a computer model for the rapid generation of large quantities of accurately labelled photo-realistic training data and demonstrate that this data is of sufficient fidelity to allow the system to accurately characterise real drones in flight. Our network will provide a valuable tool in the image processing chain where it may build upon existing drone detection technologies to provide complete drone characterisation over wide areas.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3162866</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2038-063X</orcidid><orcidid>https://orcid.org/0000-0003-3561-4953</orcidid><orcidid>https://orcid.org/0000-0001-6280-2760</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.38154-38164 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9743918 |
source | IEEE Open Access Journals |
subjects | Air monitoring Airspace Body parts Cameras Convolutional neural network Decision trees Drones Engines Feature extraction Image processing Image segmentation Laser radar Optical imaging orientation detection Pitch (inclination) pose Rolling motion segmentation Yaw |
title | DroneSense: The Identification, Segmentation, and Orientation Detection of Drones via Neural Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A19%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DroneSense:%20The%20Identification,%20Segmentation,%20and%20Orientation%20Detection%20of%20Drones%20via%20Neural%20Networks&rft.jtitle=IEEE%20access&rft.au=Scholes,%20Stirling&rft.date=2022&rft.volume=10&rft.spage=38154&rft.epage=38164&rft.pages=38154-38164&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3162866&rft_dat=%3Cproquest_ieee_%3E2653372320%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-1fc41d96ed0208cf9d2e6d737ac0d396a3fcddc588f7082444675fd10299df193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2653372320&rft_id=info:pmid/&rft_ieee_id=9743918&rfr_iscdi=true |