Loading…
Cognitive Path Planning With Spatial Memory Distortion
Human path-planning operates differently from deterministic AI-based path-planning algorithms due to the decay and distortion in a human's spatial memory and the lack of complete scene knowledge. Here, we present a cognitive model of path-planning that simulates human-like learning of unfamilia...
Saved in:
Published in: | IEEE transactions on visualization and computer graphics 2023-08, Vol.29 (8), p.3535-3549 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Human path-planning operates differently from deterministic AI-based path-planning algorithms due to the decay and distortion in a human's spatial memory and the lack of complete scene knowledge. Here, we present a cognitive model of path-planning that simulates human-like learning of unfamiliar environments, supports systematic degradation in spatial memory, and distorts spatial recall during path-planning. We propose a Dynamic Hierarchical Cognitive Graph (DHCG) representation to encode the environment structure by incorporating two critical spatial memory biases during exploration: categorical adjustment and sequence order effect . We then extend the "Fine-To-Coarse" (FTC), the most prevalent path-planning heuristic, to incorporate spatial uncertainty during recall through the DHCG. We conducted a lab-based Virtual Reality (VR) experiment to validate the proposed cognitive path-planning model and made three observations: (1) a statistically significant impact of sequence order effect on participants' route-choices, (2) approximately three hierarchical levels in the DHCG according to participants' recall data, and (3) similar trajectories and significantly similar wayfinding performances between participants and simulated cognitive agents on identical path-planning tasks. Furthermore, we performed two detailed simulation experiments with different FTC variants on a Manhattan-style grid. Experimental results demonstrate that the proposed cognitive path-planning model successfully produces human-like paths and can capture human wayfinding's complex and dynamic nature, which traditional AI-based path-planning algorithms cannot capture. |
---|---|
ISSN: | 1077-2626 1941-0506 |
DOI: | 10.1109/TVCG.2022.3163794 |