Loading…

Modeling The Detection Capability Of High-Speed Spiking Cameras

The novel working principle enables spiking cameras to capture high-speed moving objects. However, the applications of spiking cameras can be affected by many factors, such as brightness intensity, detectable distance, and the maximum speed of moving targets. Improper settings such as weak ambient b...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhao, Junwei, Yu, Zhaofei, Ma, Lei, Ding, Ziluo, Zhang, Shiliang, Tian, Yonghong, Huang, Tiejun
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4657
container_issue
container_start_page 4653
container_title
container_volume
creator Zhao, Junwei
Yu, Zhaofei
Ma, Lei
Ding, Ziluo
Zhang, Shiliang
Tian, Yonghong
Huang, Tiejun
description The novel working principle enables spiking cameras to capture high-speed moving objects. However, the applications of spiking cameras can be affected by many factors, such as brightness intensity, detectable distance, and the maximum speed of moving targets. Improper settings such as weak ambient brightness and too short object-camera distance, will lead to failure in the application of such cameras. To address the issue, this paper proposes a modeling algorithm that studies the detection capability of spiking cameras. The algorithm deduces the maximum detectable speed of spiking cameras corresponding to different scenario settings (e.g., brightness intensity, camera lens, and object-camera distance) based on the basic technical parameters of cameras (e.g., pixel size, spatial and temporal resolution). Thereby, the proper camera settings for various applications can be determined. Extensive experiments verify the effectiveness of the modeling algorithm. To our best knowledge, it is the first work to investigate the detection capability of spiking cameras.
doi_str_mv 10.1109/ICASSP43922.2022.9747018
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9747018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9747018</ieee_id><sourcerecordid>9747018</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-7c316ea39ce7486f88488dc67324674039affbad5d7b45068d200c0254f7fefd3</originalsourceid><addsrcrecordid>eNotT8tKw0AUHQXBtvoFbuYHpt55ZB4rkfioUKmQCu7KZOZOO5q2Icmmf2_EwuGczeE8CKEc5pyDu38rH6vqQ0knxFzASM4oA9xekCnXulAwQl-SiZDGMe7g65pM-_4bAKxRdkIe3o8Rm3zY0vUO6RMOGIZ8PNDSt77OTR5OdJXoIm93rGoRI63a_PNnL_0eO9_fkKvkmx5vzzojny_P63LBlqvXcduSZQFyYCZIrtFLF3Cs1claZW0M2kihtFEgnU-p9rGIplYFaBsFQABRqGQSpihn5O4_NyPipu3y3nenzfms_AUGJkk2</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Modeling The Detection Capability Of High-Speed Spiking Cameras</title><source>IEEE Xplore All Conference Series</source><creator>Zhao, Junwei ; Yu, Zhaofei ; Ma, Lei ; Ding, Ziluo ; Zhang, Shiliang ; Tian, Yonghong ; Huang, Tiejun</creator><creatorcontrib>Zhao, Junwei ; Yu, Zhaofei ; Ma, Lei ; Ding, Ziluo ; Zhang, Shiliang ; Tian, Yonghong ; Huang, Tiejun</creatorcontrib><description>The novel working principle enables spiking cameras to capture high-speed moving objects. However, the applications of spiking cameras can be affected by many factors, such as brightness intensity, detectable distance, and the maximum speed of moving targets. Improper settings such as weak ambient brightness and too short object-camera distance, will lead to failure in the application of such cameras. To address the issue, this paper proposes a modeling algorithm that studies the detection capability of spiking cameras. The algorithm deduces the maximum detectable speed of spiking cameras corresponding to different scenario settings (e.g., brightness intensity, camera lens, and object-camera distance) based on the basic technical parameters of cameras (e.g., pixel size, spatial and temporal resolution). Thereby, the proper camera settings for various applications can be determined. Extensive experiments verify the effectiveness of the modeling algorithm. To our best knowledge, it is the first work to investigate the detection capability of spiking cameras.</description><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 1665405406</identifier><identifier>EISBN: 9781665405409</identifier><identifier>DOI: 10.1109/ICASSP43922.2022.9747018</identifier><language>eng</language><publisher>IEEE</publisher><subject>Brightness ; Cameras ; Emerging Multimedia Applications ; Neuromorphic Vision Sensing ; Neuromorphics ; Robot vision systems ; Sensors ; Signal processing ; Signal processing algorithms ; Spike Signal Processing</subject><ispartof>ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2022, p.4653-4657</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9747018$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9747018$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Junwei</creatorcontrib><creatorcontrib>Yu, Zhaofei</creatorcontrib><creatorcontrib>Ma, Lei</creatorcontrib><creatorcontrib>Ding, Ziluo</creatorcontrib><creatorcontrib>Zhang, Shiliang</creatorcontrib><creatorcontrib>Tian, Yonghong</creatorcontrib><creatorcontrib>Huang, Tiejun</creatorcontrib><title>Modeling The Detection Capability Of High-Speed Spiking Cameras</title><title>ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>The novel working principle enables spiking cameras to capture high-speed moving objects. However, the applications of spiking cameras can be affected by many factors, such as brightness intensity, detectable distance, and the maximum speed of moving targets. Improper settings such as weak ambient brightness and too short object-camera distance, will lead to failure in the application of such cameras. To address the issue, this paper proposes a modeling algorithm that studies the detection capability of spiking cameras. The algorithm deduces the maximum detectable speed of spiking cameras corresponding to different scenario settings (e.g., brightness intensity, camera lens, and object-camera distance) based on the basic technical parameters of cameras (e.g., pixel size, spatial and temporal resolution). Thereby, the proper camera settings for various applications can be determined. Extensive experiments verify the effectiveness of the modeling algorithm. To our best knowledge, it is the first work to investigate the detection capability of spiking cameras.</description><subject>Brightness</subject><subject>Cameras</subject><subject>Emerging Multimedia Applications</subject><subject>Neuromorphic Vision Sensing</subject><subject>Neuromorphics</subject><subject>Robot vision systems</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Spike Signal Processing</subject><issn>2379-190X</issn><isbn>1665405406</isbn><isbn>9781665405409</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotT8tKw0AUHQXBtvoFbuYHpt55ZB4rkfioUKmQCu7KZOZOO5q2Icmmf2_EwuGczeE8CKEc5pyDu38rH6vqQ0knxFzASM4oA9xekCnXulAwQl-SiZDGMe7g65pM-_4bAKxRdkIe3o8Rm3zY0vUO6RMOGIZ8PNDSt77OTR5OdJXoIm93rGoRI63a_PNnL_0eO9_fkKvkmx5vzzojny_P63LBlqvXcduSZQFyYCZIrtFLF3Cs1claZW0M2kihtFEgnU-p9rGIplYFaBsFQABRqGQSpihn5O4_NyPipu3y3nenzfms_AUGJkk2</recordid><startdate>20220523</startdate><enddate>20220523</enddate><creator>Zhao, Junwei</creator><creator>Yu, Zhaofei</creator><creator>Ma, Lei</creator><creator>Ding, Ziluo</creator><creator>Zhang, Shiliang</creator><creator>Tian, Yonghong</creator><creator>Huang, Tiejun</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20220523</creationdate><title>Modeling The Detection Capability Of High-Speed Spiking Cameras</title><author>Zhao, Junwei ; Yu, Zhaofei ; Ma, Lei ; Ding, Ziluo ; Zhang, Shiliang ; Tian, Yonghong ; Huang, Tiejun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-7c316ea39ce7486f88488dc67324674039affbad5d7b45068d200c0254f7fefd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Brightness</topic><topic>Cameras</topic><topic>Emerging Multimedia Applications</topic><topic>Neuromorphic Vision Sensing</topic><topic>Neuromorphics</topic><topic>Robot vision systems</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Spike Signal Processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Junwei</creatorcontrib><creatorcontrib>Yu, Zhaofei</creatorcontrib><creatorcontrib>Ma, Lei</creatorcontrib><creatorcontrib>Ding, Ziluo</creatorcontrib><creatorcontrib>Zhang, Shiliang</creatorcontrib><creatorcontrib>Tian, Yonghong</creatorcontrib><creatorcontrib>Huang, Tiejun</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Junwei</au><au>Yu, Zhaofei</au><au>Ma, Lei</au><au>Ding, Ziluo</au><au>Zhang, Shiliang</au><au>Tian, Yonghong</au><au>Huang, Tiejun</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Modeling The Detection Capability Of High-Speed Spiking Cameras</atitle><btitle>ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2022-05-23</date><risdate>2022</risdate><spage>4653</spage><epage>4657</epage><pages>4653-4657</pages><eissn>2379-190X</eissn><eisbn>1665405406</eisbn><eisbn>9781665405409</eisbn><abstract>The novel working principle enables spiking cameras to capture high-speed moving objects. However, the applications of spiking cameras can be affected by many factors, such as brightness intensity, detectable distance, and the maximum speed of moving targets. Improper settings such as weak ambient brightness and too short object-camera distance, will lead to failure in the application of such cameras. To address the issue, this paper proposes a modeling algorithm that studies the detection capability of spiking cameras. The algorithm deduces the maximum detectable speed of spiking cameras corresponding to different scenario settings (e.g., brightness intensity, camera lens, and object-camera distance) based on the basic technical parameters of cameras (e.g., pixel size, spatial and temporal resolution). Thereby, the proper camera settings for various applications can be determined. Extensive experiments verify the effectiveness of the modeling algorithm. To our best knowledge, it is the first work to investigate the detection capability of spiking cameras.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP43922.2022.9747018</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2379-190X
ispartof ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2022, p.4653-4657
issn 2379-190X
language eng
recordid cdi_ieee_primary_9747018
source IEEE Xplore All Conference Series
subjects Brightness
Cameras
Emerging Multimedia Applications
Neuromorphic Vision Sensing
Neuromorphics
Robot vision systems
Sensors
Signal processing
Signal processing algorithms
Spike Signal Processing
title Modeling The Detection Capability Of High-Speed Spiking Cameras
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A55%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Modeling%20The%20Detection%20Capability%20Of%20High-Speed%20Spiking%20Cameras&rft.btitle=ICASSP%202022%20-%202022%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Zhao,%20Junwei&rft.date=2022-05-23&rft.spage=4653&rft.epage=4657&rft.pages=4653-4657&rft.eissn=2379-190X&rft_id=info:doi/10.1109/ICASSP43922.2022.9747018&rft.eisbn=1665405406&rft.eisbn_list=9781665405409&rft_dat=%3Cieee_CHZPO%3E9747018%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-7c316ea39ce7486f88488dc67324674039affbad5d7b45068d200c0254f7fefd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9747018&rfr_iscdi=true