Loading…
Modeling The Detection Capability Of High-Speed Spiking Cameras
The novel working principle enables spiking cameras to capture high-speed moving objects. However, the applications of spiking cameras can be affected by many factors, such as brightness intensity, detectable distance, and the maximum speed of moving targets. Improper settings such as weak ambient b...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4657 |
container_issue | |
container_start_page | 4653 |
container_title | |
container_volume | |
creator | Zhao, Junwei Yu, Zhaofei Ma, Lei Ding, Ziluo Zhang, Shiliang Tian, Yonghong Huang, Tiejun |
description | The novel working principle enables spiking cameras to capture high-speed moving objects. However, the applications of spiking cameras can be affected by many factors, such as brightness intensity, detectable distance, and the maximum speed of moving targets. Improper settings such as weak ambient brightness and too short object-camera distance, will lead to failure in the application of such cameras. To address the issue, this paper proposes a modeling algorithm that studies the detection capability of spiking cameras. The algorithm deduces the maximum detectable speed of spiking cameras corresponding to different scenario settings (e.g., brightness intensity, camera lens, and object-camera distance) based on the basic technical parameters of cameras (e.g., pixel size, spatial and temporal resolution). Thereby, the proper camera settings for various applications can be determined. Extensive experiments verify the effectiveness of the modeling algorithm. To our best knowledge, it is the first work to investigate the detection capability of spiking cameras. |
doi_str_mv | 10.1109/ICASSP43922.2022.9747018 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9747018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9747018</ieee_id><sourcerecordid>9747018</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-7c316ea39ce7486f88488dc67324674039affbad5d7b45068d200c0254f7fefd3</originalsourceid><addsrcrecordid>eNotT8tKw0AUHQXBtvoFbuYHpt55ZB4rkfioUKmQCu7KZOZOO5q2Icmmf2_EwuGczeE8CKEc5pyDu38rH6vqQ0knxFzASM4oA9xekCnXulAwQl-SiZDGMe7g65pM-_4bAKxRdkIe3o8Rm3zY0vUO6RMOGIZ8PNDSt77OTR5OdJXoIm93rGoRI63a_PNnL_0eO9_fkKvkmx5vzzojny_P63LBlqvXcduSZQFyYCZIrtFLF3Cs1claZW0M2kihtFEgnU-p9rGIplYFaBsFQABRqGQSpihn5O4_NyPipu3y3nenzfms_AUGJkk2</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Modeling The Detection Capability Of High-Speed Spiking Cameras</title><source>IEEE Xplore All Conference Series</source><creator>Zhao, Junwei ; Yu, Zhaofei ; Ma, Lei ; Ding, Ziluo ; Zhang, Shiliang ; Tian, Yonghong ; Huang, Tiejun</creator><creatorcontrib>Zhao, Junwei ; Yu, Zhaofei ; Ma, Lei ; Ding, Ziluo ; Zhang, Shiliang ; Tian, Yonghong ; Huang, Tiejun</creatorcontrib><description>The novel working principle enables spiking cameras to capture high-speed moving objects. However, the applications of spiking cameras can be affected by many factors, such as brightness intensity, detectable distance, and the maximum speed of moving targets. Improper settings such as weak ambient brightness and too short object-camera distance, will lead to failure in the application of such cameras. To address the issue, this paper proposes a modeling algorithm that studies the detection capability of spiking cameras. The algorithm deduces the maximum detectable speed of spiking cameras corresponding to different scenario settings (e.g., brightness intensity, camera lens, and object-camera distance) based on the basic technical parameters of cameras (e.g., pixel size, spatial and temporal resolution). Thereby, the proper camera settings for various applications can be determined. Extensive experiments verify the effectiveness of the modeling algorithm. To our best knowledge, it is the first work to investigate the detection capability of spiking cameras.</description><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 1665405406</identifier><identifier>EISBN: 9781665405409</identifier><identifier>DOI: 10.1109/ICASSP43922.2022.9747018</identifier><language>eng</language><publisher>IEEE</publisher><subject>Brightness ; Cameras ; Emerging Multimedia Applications ; Neuromorphic Vision Sensing ; Neuromorphics ; Robot vision systems ; Sensors ; Signal processing ; Signal processing algorithms ; Spike Signal Processing</subject><ispartof>ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2022, p.4653-4657</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9747018$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9747018$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Junwei</creatorcontrib><creatorcontrib>Yu, Zhaofei</creatorcontrib><creatorcontrib>Ma, Lei</creatorcontrib><creatorcontrib>Ding, Ziluo</creatorcontrib><creatorcontrib>Zhang, Shiliang</creatorcontrib><creatorcontrib>Tian, Yonghong</creatorcontrib><creatorcontrib>Huang, Tiejun</creatorcontrib><title>Modeling The Detection Capability Of High-Speed Spiking Cameras</title><title>ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>The novel working principle enables spiking cameras to capture high-speed moving objects. However, the applications of spiking cameras can be affected by many factors, such as brightness intensity, detectable distance, and the maximum speed of moving targets. Improper settings such as weak ambient brightness and too short object-camera distance, will lead to failure in the application of such cameras. To address the issue, this paper proposes a modeling algorithm that studies the detection capability of spiking cameras. The algorithm deduces the maximum detectable speed of spiking cameras corresponding to different scenario settings (e.g., brightness intensity, camera lens, and object-camera distance) based on the basic technical parameters of cameras (e.g., pixel size, spatial and temporal resolution). Thereby, the proper camera settings for various applications can be determined. Extensive experiments verify the effectiveness of the modeling algorithm. To our best knowledge, it is the first work to investigate the detection capability of spiking cameras.</description><subject>Brightness</subject><subject>Cameras</subject><subject>Emerging Multimedia Applications</subject><subject>Neuromorphic Vision Sensing</subject><subject>Neuromorphics</subject><subject>Robot vision systems</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Spike Signal Processing</subject><issn>2379-190X</issn><isbn>1665405406</isbn><isbn>9781665405409</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotT8tKw0AUHQXBtvoFbuYHpt55ZB4rkfioUKmQCu7KZOZOO5q2Icmmf2_EwuGczeE8CKEc5pyDu38rH6vqQ0knxFzASM4oA9xekCnXulAwQl-SiZDGMe7g65pM-_4bAKxRdkIe3o8Rm3zY0vUO6RMOGIZ8PNDSt77OTR5OdJXoIm93rGoRI63a_PNnL_0eO9_fkKvkmx5vzzojny_P63LBlqvXcduSZQFyYCZIrtFLF3Cs1claZW0M2kihtFEgnU-p9rGIplYFaBsFQABRqGQSpihn5O4_NyPipu3y3nenzfms_AUGJkk2</recordid><startdate>20220523</startdate><enddate>20220523</enddate><creator>Zhao, Junwei</creator><creator>Yu, Zhaofei</creator><creator>Ma, Lei</creator><creator>Ding, Ziluo</creator><creator>Zhang, Shiliang</creator><creator>Tian, Yonghong</creator><creator>Huang, Tiejun</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20220523</creationdate><title>Modeling The Detection Capability Of High-Speed Spiking Cameras</title><author>Zhao, Junwei ; Yu, Zhaofei ; Ma, Lei ; Ding, Ziluo ; Zhang, Shiliang ; Tian, Yonghong ; Huang, Tiejun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-7c316ea39ce7486f88488dc67324674039affbad5d7b45068d200c0254f7fefd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Brightness</topic><topic>Cameras</topic><topic>Emerging Multimedia Applications</topic><topic>Neuromorphic Vision Sensing</topic><topic>Neuromorphics</topic><topic>Robot vision systems</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Spike Signal Processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Junwei</creatorcontrib><creatorcontrib>Yu, Zhaofei</creatorcontrib><creatorcontrib>Ma, Lei</creatorcontrib><creatorcontrib>Ding, Ziluo</creatorcontrib><creatorcontrib>Zhang, Shiliang</creatorcontrib><creatorcontrib>Tian, Yonghong</creatorcontrib><creatorcontrib>Huang, Tiejun</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Junwei</au><au>Yu, Zhaofei</au><au>Ma, Lei</au><au>Ding, Ziluo</au><au>Zhang, Shiliang</au><au>Tian, Yonghong</au><au>Huang, Tiejun</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Modeling The Detection Capability Of High-Speed Spiking Cameras</atitle><btitle>ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2022-05-23</date><risdate>2022</risdate><spage>4653</spage><epage>4657</epage><pages>4653-4657</pages><eissn>2379-190X</eissn><eisbn>1665405406</eisbn><eisbn>9781665405409</eisbn><abstract>The novel working principle enables spiking cameras to capture high-speed moving objects. However, the applications of spiking cameras can be affected by many factors, such as brightness intensity, detectable distance, and the maximum speed of moving targets. Improper settings such as weak ambient brightness and too short object-camera distance, will lead to failure in the application of such cameras. To address the issue, this paper proposes a modeling algorithm that studies the detection capability of spiking cameras. The algorithm deduces the maximum detectable speed of spiking cameras corresponding to different scenario settings (e.g., brightness intensity, camera lens, and object-camera distance) based on the basic technical parameters of cameras (e.g., pixel size, spatial and temporal resolution). Thereby, the proper camera settings for various applications can be determined. Extensive experiments verify the effectiveness of the modeling algorithm. To our best knowledge, it is the first work to investigate the detection capability of spiking cameras.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP43922.2022.9747018</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2379-190X |
ispartof | ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2022, p.4653-4657 |
issn | 2379-190X |
language | eng |
recordid | cdi_ieee_primary_9747018 |
source | IEEE Xplore All Conference Series |
subjects | Brightness Cameras Emerging Multimedia Applications Neuromorphic Vision Sensing Neuromorphics Robot vision systems Sensors Signal processing Signal processing algorithms Spike Signal Processing |
title | Modeling The Detection Capability Of High-Speed Spiking Cameras |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A55%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Modeling%20The%20Detection%20Capability%20Of%20High-Speed%20Spiking%20Cameras&rft.btitle=ICASSP%202022%20-%202022%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Zhao,%20Junwei&rft.date=2022-05-23&rft.spage=4653&rft.epage=4657&rft.pages=4653-4657&rft.eissn=2379-190X&rft_id=info:doi/10.1109/ICASSP43922.2022.9747018&rft.eisbn=1665405406&rft.eisbn_list=9781665405409&rft_dat=%3Cieee_CHZPO%3E9747018%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-7c316ea39ce7486f88488dc67324674039affbad5d7b45068d200c0254f7fefd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9747018&rfr_iscdi=true |