Loading…
Multi-Task fMRI Data Fusion Using IVA and PARAFAC2
Data fusion-the joint analysis of multiple datasets-through coupled factorizations has the promise to enable enhanced knowledge discovery, and hence is an active area. Various formulations of coupled matrix factorizations have been proposed, each with its own modeling assumptions. In this paper, we...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c308t-ea820f8a37c996d1ec121858717c3671222b387897239208223f9071bd4b15363 |
---|---|
cites | |
container_end_page | 1470 |
container_issue | |
container_start_page | 1466 |
container_title | |
container_volume | |
creator | Lehmann, Isabell Acar, Evrim Hasija, Tanuj Akhonda, M.A.B.S. Calhoun, Vince D. Schreier, Peter J. Adali, Tulay |
description | Data fusion-the joint analysis of multiple datasets-through coupled factorizations has the promise to enable enhanced knowledge discovery, and hence is an active area. Various formulations of coupled matrix factorizations have been proposed, each with its own modeling assumptions. In this paper, we study two such methods, namely Independent Vector Analysis (IVA), i.e., extension of Independent Component Analysis (ICA) to multiple datasets, and PARAFAC2, a tensor factorization approach. We demonstrate the modeling assumptions of IVA and PARAFAC2 using simulations, revealing that both methods can accurately capture the latent components, albeit with certain differences in capturing the corresponding subject scores. By making use of a rich multi-task functional Magnetic Resonance Imaging (fMRI) dataset, we show how the two methods can be used for achieving two important goals at once, namely capturing group differences between patients with schizophrenia and healthy controls with interpretable components, as well as understanding the relationship across multiple tasks. This is achieved through the definition of source component vectors across datasets. |
doi_str_mv | 10.1109/ICASSP43922.2022.9747662 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9747662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9747662</ieee_id><sourcerecordid>9747662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-ea820f8a37c996d1ec121858717c3671222b387897239208223f9071bd4b15363</originalsourceid><addsrcrecordid>eNotj81Kw0AUhUdBsK0-gZt5gdR770zmzixDNBposfRH3JVJMpFojdJJF769AQuHc3Yf3xFCIswRwd2XebbZrLRyRHOCsRxrNoYuxBSNSTWMMZdiQopdgg7ersU0xg8AsKztRNDydBi6ZOvjp2yX61I--MHL4hS7717uYte_y_I1k75v5CpbZ0WW0424av0hhtvzzsSueNzmz8ni5WnUWSS1AjskwVuC1nrFtXOmwVAjoU0tI9fKMBJRpSxbxzTagyVSrQPGqtEVpsqombj753YhhP3Psfvyx9_9-Z_6A17-QOA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multi-Task fMRI Data Fusion Using IVA and PARAFAC2</title><source>IEEE Xplore All Conference Series</source><creator>Lehmann, Isabell ; Acar, Evrim ; Hasija, Tanuj ; Akhonda, M.A.B.S. ; Calhoun, Vince D. ; Schreier, Peter J. ; Adali, Tulay</creator><creatorcontrib>Lehmann, Isabell ; Acar, Evrim ; Hasija, Tanuj ; Akhonda, M.A.B.S. ; Calhoun, Vince D. ; Schreier, Peter J. ; Adali, Tulay</creatorcontrib><description>Data fusion-the joint analysis of multiple datasets-through coupled factorizations has the promise to enable enhanced knowledge discovery, and hence is an active area. Various formulations of coupled matrix factorizations have been proposed, each with its own modeling assumptions. In this paper, we study two such methods, namely Independent Vector Analysis (IVA), i.e., extension of Independent Component Analysis (ICA) to multiple datasets, and PARAFAC2, a tensor factorization approach. We demonstrate the modeling assumptions of IVA and PARAFAC2 using simulations, revealing that both methods can accurately capture the latent components, albeit with certain differences in capturing the corresponding subject scores. By making use of a rich multi-task functional Magnetic Resonance Imaging (fMRI) dataset, we show how the two methods can be used for achieving two important goals at once, namely capturing group differences between patients with schizophrenia and healthy controls with interpretable components, as well as understanding the relationship across multiple tasks. This is achieved through the definition of source component vectors across datasets.</description><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 1665405406</identifier><identifier>EISBN: 9781665405409</identifier><identifier>DOI: 10.1109/ICASSP43922.2022.9747662</identifier><language>eng</language><publisher>IEEE</publisher><subject>data fusion ; Functional magnetic resonance imaging ; Independent component analysis ; independent vector analysis ; Knowledge discovery ; multi-task fMRI ; Multitasking ; PARAFAC2 ; Reliability ; Signal processing ; tensor decompositions ; Tensors</subject><ispartof>ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2022, p.1466-1470</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-ea820f8a37c996d1ec121858717c3671222b387897239208223f9071bd4b15363</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9747662$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9747662$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lehmann, Isabell</creatorcontrib><creatorcontrib>Acar, Evrim</creatorcontrib><creatorcontrib>Hasija, Tanuj</creatorcontrib><creatorcontrib>Akhonda, M.A.B.S.</creatorcontrib><creatorcontrib>Calhoun, Vince D.</creatorcontrib><creatorcontrib>Schreier, Peter J.</creatorcontrib><creatorcontrib>Adali, Tulay</creatorcontrib><title>Multi-Task fMRI Data Fusion Using IVA and PARAFAC2</title><title>ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>Data fusion-the joint analysis of multiple datasets-through coupled factorizations has the promise to enable enhanced knowledge discovery, and hence is an active area. Various formulations of coupled matrix factorizations have been proposed, each with its own modeling assumptions. In this paper, we study two such methods, namely Independent Vector Analysis (IVA), i.e., extension of Independent Component Analysis (ICA) to multiple datasets, and PARAFAC2, a tensor factorization approach. We demonstrate the modeling assumptions of IVA and PARAFAC2 using simulations, revealing that both methods can accurately capture the latent components, albeit with certain differences in capturing the corresponding subject scores. By making use of a rich multi-task functional Magnetic Resonance Imaging (fMRI) dataset, we show how the two methods can be used for achieving two important goals at once, namely capturing group differences between patients with schizophrenia and healthy controls with interpretable components, as well as understanding the relationship across multiple tasks. This is achieved through the definition of source component vectors across datasets.</description><subject>data fusion</subject><subject>Functional magnetic resonance imaging</subject><subject>Independent component analysis</subject><subject>independent vector analysis</subject><subject>Knowledge discovery</subject><subject>multi-task fMRI</subject><subject>Multitasking</subject><subject>PARAFAC2</subject><subject>Reliability</subject><subject>Signal processing</subject><subject>tensor decompositions</subject><subject>Tensors</subject><issn>2379-190X</issn><isbn>1665405406</isbn><isbn>9781665405409</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81Kw0AUhUdBsK0-gZt5gdR770zmzixDNBposfRH3JVJMpFojdJJF769AQuHc3Yf3xFCIswRwd2XebbZrLRyRHOCsRxrNoYuxBSNSTWMMZdiQopdgg7ersU0xg8AsKztRNDydBi6ZOvjp2yX61I--MHL4hS7717uYte_y_I1k75v5CpbZ0WW0424av0hhtvzzsSueNzmz8ni5WnUWSS1AjskwVuC1nrFtXOmwVAjoU0tI9fKMBJRpSxbxzTagyVSrQPGqtEVpsqombj753YhhP3Psfvyx9_9-Z_6A17-QOA</recordid><startdate>20220523</startdate><enddate>20220523</enddate><creator>Lehmann, Isabell</creator><creator>Acar, Evrim</creator><creator>Hasija, Tanuj</creator><creator>Akhonda, M.A.B.S.</creator><creator>Calhoun, Vince D.</creator><creator>Schreier, Peter J.</creator><creator>Adali, Tulay</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20220523</creationdate><title>Multi-Task fMRI Data Fusion Using IVA and PARAFAC2</title><author>Lehmann, Isabell ; Acar, Evrim ; Hasija, Tanuj ; Akhonda, M.A.B.S. ; Calhoun, Vince D. ; Schreier, Peter J. ; Adali, Tulay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-ea820f8a37c996d1ec121858717c3671222b387897239208223f9071bd4b15363</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>data fusion</topic><topic>Functional magnetic resonance imaging</topic><topic>Independent component analysis</topic><topic>independent vector analysis</topic><topic>Knowledge discovery</topic><topic>multi-task fMRI</topic><topic>Multitasking</topic><topic>PARAFAC2</topic><topic>Reliability</topic><topic>Signal processing</topic><topic>tensor decompositions</topic><topic>Tensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Lehmann, Isabell</creatorcontrib><creatorcontrib>Acar, Evrim</creatorcontrib><creatorcontrib>Hasija, Tanuj</creatorcontrib><creatorcontrib>Akhonda, M.A.B.S.</creatorcontrib><creatorcontrib>Calhoun, Vince D.</creatorcontrib><creatorcontrib>Schreier, Peter J.</creatorcontrib><creatorcontrib>Adali, Tulay</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lehmann, Isabell</au><au>Acar, Evrim</au><au>Hasija, Tanuj</au><au>Akhonda, M.A.B.S.</au><au>Calhoun, Vince D.</au><au>Schreier, Peter J.</au><au>Adali, Tulay</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multi-Task fMRI Data Fusion Using IVA and PARAFAC2</atitle><btitle>ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2022-05-23</date><risdate>2022</risdate><spage>1466</spage><epage>1470</epage><pages>1466-1470</pages><eissn>2379-190X</eissn><eisbn>1665405406</eisbn><eisbn>9781665405409</eisbn><abstract>Data fusion-the joint analysis of multiple datasets-through coupled factorizations has the promise to enable enhanced knowledge discovery, and hence is an active area. Various formulations of coupled matrix factorizations have been proposed, each with its own modeling assumptions. In this paper, we study two such methods, namely Independent Vector Analysis (IVA), i.e., extension of Independent Component Analysis (ICA) to multiple datasets, and PARAFAC2, a tensor factorization approach. We demonstrate the modeling assumptions of IVA and PARAFAC2 using simulations, revealing that both methods can accurately capture the latent components, albeit with certain differences in capturing the corresponding subject scores. By making use of a rich multi-task functional Magnetic Resonance Imaging (fMRI) dataset, we show how the two methods can be used for achieving two important goals at once, namely capturing group differences between patients with schizophrenia and healthy controls with interpretable components, as well as understanding the relationship across multiple tasks. This is achieved through the definition of source component vectors across datasets.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP43922.2022.9747662</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2379-190X |
ispartof | ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2022, p.1466-1470 |
issn | 2379-190X |
language | eng |
recordid | cdi_ieee_primary_9747662 |
source | IEEE Xplore All Conference Series |
subjects | data fusion Functional magnetic resonance imaging Independent component analysis independent vector analysis Knowledge discovery multi-task fMRI Multitasking PARAFAC2 Reliability Signal processing tensor decompositions Tensors |
title | Multi-Task fMRI Data Fusion Using IVA and PARAFAC2 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A58%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multi-Task%20fMRI%20Data%20Fusion%20Using%20IVA%20and%20PARAFAC2&rft.btitle=ICASSP%202022%20-%202022%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Lehmann,%20Isabell&rft.date=2022-05-23&rft.spage=1466&rft.epage=1470&rft.pages=1466-1470&rft.eissn=2379-190X&rft_id=info:doi/10.1109/ICASSP43922.2022.9747662&rft.eisbn=1665405406&rft.eisbn_list=9781665405409&rft_dat=%3Cieee_CHZPO%3E9747662%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c308t-ea820f8a37c996d1ec121858717c3671222b387897239208223f9071bd4b15363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9747662&rfr_iscdi=true |