Loading…

Multi-Task fMRI Data Fusion Using IVA and PARAFAC2

Data fusion-the joint analysis of multiple datasets-through coupled factorizations has the promise to enable enhanced knowledge discovery, and hence is an active area. Various formulations of coupled matrix factorizations have been proposed, each with its own modeling assumptions. In this paper, we...

Full description

Saved in:
Bibliographic Details
Main Authors: Lehmann, Isabell, Acar, Evrim, Hasija, Tanuj, Akhonda, M.A.B.S., Calhoun, Vince D., Schreier, Peter J., Adali, Tulay
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c308t-ea820f8a37c996d1ec121858717c3671222b387897239208223f9071bd4b15363
cites
container_end_page 1470
container_issue
container_start_page 1466
container_title
container_volume
creator Lehmann, Isabell
Acar, Evrim
Hasija, Tanuj
Akhonda, M.A.B.S.
Calhoun, Vince D.
Schreier, Peter J.
Adali, Tulay
description Data fusion-the joint analysis of multiple datasets-through coupled factorizations has the promise to enable enhanced knowledge discovery, and hence is an active area. Various formulations of coupled matrix factorizations have been proposed, each with its own modeling assumptions. In this paper, we study two such methods, namely Independent Vector Analysis (IVA), i.e., extension of Independent Component Analysis (ICA) to multiple datasets, and PARAFAC2, a tensor factorization approach. We demonstrate the modeling assumptions of IVA and PARAFAC2 using simulations, revealing that both methods can accurately capture the latent components, albeit with certain differences in capturing the corresponding subject scores. By making use of a rich multi-task functional Magnetic Resonance Imaging (fMRI) dataset, we show how the two methods can be used for achieving two important goals at once, namely capturing group differences between patients with schizophrenia and healthy controls with interpretable components, as well as understanding the relationship across multiple tasks. This is achieved through the definition of source component vectors across datasets.
doi_str_mv 10.1109/ICASSP43922.2022.9747662
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9747662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9747662</ieee_id><sourcerecordid>9747662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-ea820f8a37c996d1ec121858717c3671222b387897239208223f9071bd4b15363</originalsourceid><addsrcrecordid>eNotj81Kw0AUhUdBsK0-gZt5gdR770zmzixDNBposfRH3JVJMpFojdJJF769AQuHc3Yf3xFCIswRwd2XebbZrLRyRHOCsRxrNoYuxBSNSTWMMZdiQopdgg7ersU0xg8AsKztRNDydBi6ZOvjp2yX61I--MHL4hS7717uYte_y_I1k75v5CpbZ0WW0424av0hhtvzzsSueNzmz8ni5WnUWSS1AjskwVuC1nrFtXOmwVAjoU0tI9fKMBJRpSxbxzTagyVSrQPGqtEVpsqombj753YhhP3Psfvyx9_9-Z_6A17-QOA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multi-Task fMRI Data Fusion Using IVA and PARAFAC2</title><source>IEEE Xplore All Conference Series</source><creator>Lehmann, Isabell ; Acar, Evrim ; Hasija, Tanuj ; Akhonda, M.A.B.S. ; Calhoun, Vince D. ; Schreier, Peter J. ; Adali, Tulay</creator><creatorcontrib>Lehmann, Isabell ; Acar, Evrim ; Hasija, Tanuj ; Akhonda, M.A.B.S. ; Calhoun, Vince D. ; Schreier, Peter J. ; Adali, Tulay</creatorcontrib><description>Data fusion-the joint analysis of multiple datasets-through coupled factorizations has the promise to enable enhanced knowledge discovery, and hence is an active area. Various formulations of coupled matrix factorizations have been proposed, each with its own modeling assumptions. In this paper, we study two such methods, namely Independent Vector Analysis (IVA), i.e., extension of Independent Component Analysis (ICA) to multiple datasets, and PARAFAC2, a tensor factorization approach. We demonstrate the modeling assumptions of IVA and PARAFAC2 using simulations, revealing that both methods can accurately capture the latent components, albeit with certain differences in capturing the corresponding subject scores. By making use of a rich multi-task functional Magnetic Resonance Imaging (fMRI) dataset, we show how the two methods can be used for achieving two important goals at once, namely capturing group differences between patients with schizophrenia and healthy controls with interpretable components, as well as understanding the relationship across multiple tasks. This is achieved through the definition of source component vectors across datasets.</description><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 1665405406</identifier><identifier>EISBN: 9781665405409</identifier><identifier>DOI: 10.1109/ICASSP43922.2022.9747662</identifier><language>eng</language><publisher>IEEE</publisher><subject>data fusion ; Functional magnetic resonance imaging ; Independent component analysis ; independent vector analysis ; Knowledge discovery ; multi-task fMRI ; Multitasking ; PARAFAC2 ; Reliability ; Signal processing ; tensor decompositions ; Tensors</subject><ispartof>ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2022, p.1466-1470</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-ea820f8a37c996d1ec121858717c3671222b387897239208223f9071bd4b15363</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9747662$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9747662$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lehmann, Isabell</creatorcontrib><creatorcontrib>Acar, Evrim</creatorcontrib><creatorcontrib>Hasija, Tanuj</creatorcontrib><creatorcontrib>Akhonda, M.A.B.S.</creatorcontrib><creatorcontrib>Calhoun, Vince D.</creatorcontrib><creatorcontrib>Schreier, Peter J.</creatorcontrib><creatorcontrib>Adali, Tulay</creatorcontrib><title>Multi-Task fMRI Data Fusion Using IVA and PARAFAC2</title><title>ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>Data fusion-the joint analysis of multiple datasets-through coupled factorizations has the promise to enable enhanced knowledge discovery, and hence is an active area. Various formulations of coupled matrix factorizations have been proposed, each with its own modeling assumptions. In this paper, we study two such methods, namely Independent Vector Analysis (IVA), i.e., extension of Independent Component Analysis (ICA) to multiple datasets, and PARAFAC2, a tensor factorization approach. We demonstrate the modeling assumptions of IVA and PARAFAC2 using simulations, revealing that both methods can accurately capture the latent components, albeit with certain differences in capturing the corresponding subject scores. By making use of a rich multi-task functional Magnetic Resonance Imaging (fMRI) dataset, we show how the two methods can be used for achieving two important goals at once, namely capturing group differences between patients with schizophrenia and healthy controls with interpretable components, as well as understanding the relationship across multiple tasks. This is achieved through the definition of source component vectors across datasets.</description><subject>data fusion</subject><subject>Functional magnetic resonance imaging</subject><subject>Independent component analysis</subject><subject>independent vector analysis</subject><subject>Knowledge discovery</subject><subject>multi-task fMRI</subject><subject>Multitasking</subject><subject>PARAFAC2</subject><subject>Reliability</subject><subject>Signal processing</subject><subject>tensor decompositions</subject><subject>Tensors</subject><issn>2379-190X</issn><isbn>1665405406</isbn><isbn>9781665405409</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81Kw0AUhUdBsK0-gZt5gdR770zmzixDNBposfRH3JVJMpFojdJJF769AQuHc3Yf3xFCIswRwd2XebbZrLRyRHOCsRxrNoYuxBSNSTWMMZdiQopdgg7ersU0xg8AsKztRNDydBi6ZOvjp2yX61I--MHL4hS7717uYte_y_I1k75v5CpbZ0WW0424av0hhtvzzsSueNzmz8ni5WnUWSS1AjskwVuC1nrFtXOmwVAjoU0tI9fKMBJRpSxbxzTagyVSrQPGqtEVpsqombj753YhhP3Psfvyx9_9-Z_6A17-QOA</recordid><startdate>20220523</startdate><enddate>20220523</enddate><creator>Lehmann, Isabell</creator><creator>Acar, Evrim</creator><creator>Hasija, Tanuj</creator><creator>Akhonda, M.A.B.S.</creator><creator>Calhoun, Vince D.</creator><creator>Schreier, Peter J.</creator><creator>Adali, Tulay</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20220523</creationdate><title>Multi-Task fMRI Data Fusion Using IVA and PARAFAC2</title><author>Lehmann, Isabell ; Acar, Evrim ; Hasija, Tanuj ; Akhonda, M.A.B.S. ; Calhoun, Vince D. ; Schreier, Peter J. ; Adali, Tulay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-ea820f8a37c996d1ec121858717c3671222b387897239208223f9071bd4b15363</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>data fusion</topic><topic>Functional magnetic resonance imaging</topic><topic>Independent component analysis</topic><topic>independent vector analysis</topic><topic>Knowledge discovery</topic><topic>multi-task fMRI</topic><topic>Multitasking</topic><topic>PARAFAC2</topic><topic>Reliability</topic><topic>Signal processing</topic><topic>tensor decompositions</topic><topic>Tensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Lehmann, Isabell</creatorcontrib><creatorcontrib>Acar, Evrim</creatorcontrib><creatorcontrib>Hasija, Tanuj</creatorcontrib><creatorcontrib>Akhonda, M.A.B.S.</creatorcontrib><creatorcontrib>Calhoun, Vince D.</creatorcontrib><creatorcontrib>Schreier, Peter J.</creatorcontrib><creatorcontrib>Adali, Tulay</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lehmann, Isabell</au><au>Acar, Evrim</au><au>Hasija, Tanuj</au><au>Akhonda, M.A.B.S.</au><au>Calhoun, Vince D.</au><au>Schreier, Peter J.</au><au>Adali, Tulay</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multi-Task fMRI Data Fusion Using IVA and PARAFAC2</atitle><btitle>ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2022-05-23</date><risdate>2022</risdate><spage>1466</spage><epage>1470</epage><pages>1466-1470</pages><eissn>2379-190X</eissn><eisbn>1665405406</eisbn><eisbn>9781665405409</eisbn><abstract>Data fusion-the joint analysis of multiple datasets-through coupled factorizations has the promise to enable enhanced knowledge discovery, and hence is an active area. Various formulations of coupled matrix factorizations have been proposed, each with its own modeling assumptions. In this paper, we study two such methods, namely Independent Vector Analysis (IVA), i.e., extension of Independent Component Analysis (ICA) to multiple datasets, and PARAFAC2, a tensor factorization approach. We demonstrate the modeling assumptions of IVA and PARAFAC2 using simulations, revealing that both methods can accurately capture the latent components, albeit with certain differences in capturing the corresponding subject scores. By making use of a rich multi-task functional Magnetic Resonance Imaging (fMRI) dataset, we show how the two methods can be used for achieving two important goals at once, namely capturing group differences between patients with schizophrenia and healthy controls with interpretable components, as well as understanding the relationship across multiple tasks. This is achieved through the definition of source component vectors across datasets.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP43922.2022.9747662</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2379-190X
ispartof ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2022, p.1466-1470
issn 2379-190X
language eng
recordid cdi_ieee_primary_9747662
source IEEE Xplore All Conference Series
subjects data fusion
Functional magnetic resonance imaging
Independent component analysis
independent vector analysis
Knowledge discovery
multi-task fMRI
Multitasking
PARAFAC2
Reliability
Signal processing
tensor decompositions
Tensors
title Multi-Task fMRI Data Fusion Using IVA and PARAFAC2
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A58%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multi-Task%20fMRI%20Data%20Fusion%20Using%20IVA%20and%20PARAFAC2&rft.btitle=ICASSP%202022%20-%202022%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Lehmann,%20Isabell&rft.date=2022-05-23&rft.spage=1466&rft.epage=1470&rft.pages=1466-1470&rft.eissn=2379-190X&rft_id=info:doi/10.1109/ICASSP43922.2022.9747662&rft.eisbn=1665405406&rft.eisbn_list=9781665405409&rft_dat=%3Cieee_CHZPO%3E9747662%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c308t-ea820f8a37c996d1ec121858717c3671222b387897239208223f9071bd4b15363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9747662&rfr_iscdi=true