Loading…

Exam Fraud Prevention and Class Concentration Improvement System for an Online Environment

This paper presents exam fraud prevention and class concentration improvement system for an online environment. The proposed system consists of deep learning-based face analysis, video analysis, and action recognition modules. The face analysis module first detects a face and performs face recogniti...

Full description

Saved in:
Bibliographic Details
Main Authors: Ko, Min Soo, Joo, Heeyoung, Song, Hyok
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2
container_issue
container_start_page 1
container_title
container_volume
creator Ko, Min Soo
Joo, Heeyoung
Song, Hyok
description This paper presents exam fraud prevention and class concentration improvement system for an online environment. The proposed system consists of deep learning-based face analysis, video analysis, and action recognition modules. The face analysis module first detects a face and performs face recognition for identification. Then, face spoofing detection is performed to determine if it is a fraud face, and gaze estimation and facial expression recognition are conducted to inspect the student's condition. And the video analysis module identifies whether the current image is the correct online class or exam state and detects inappropriate objects around it. Finally, the action recognition module determines abnormal online class or exam behavior. For performing on client devices., all deep learning models are optimized and converted through ONNX to be operated in an internet browser environment. The proposed system required about 300ms to analyze an image in a typical laptop computer.
doi_str_mv 10.1109/ICEIC54506.2022.9748283
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9748283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9748283</ieee_id><sourcerecordid>9748283</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-90a4ef374657d45b1622e23d2b24843d7579e8ccd17aa968b04205f73d4e14e03</originalsourceid><addsrcrecordid>eNotkM1Kw0AUhUdBsNQ-gQvnBVLv_M8sJaQaKFRQN27KtHMDI82kTGKwb2-sXR34-DgcDiEPDJaMgXusy6oulVSglxw4XzojLbfiiiycsUxrJcEJqa_JjBttCqOduyWLvv8CAMFBOCtm5LP68S1dZf8d6GvGEdMQu0R9CrQ8-L6nZZf2E8z-zOv2mLsR24nQt1M_YEubLk863aRDTEirNMbcpT_hjtw0_tDj4pJz8rGq3suXYr15rsundRGnEUPhwEtshJFamSDVjmnOkYvAd1xaKYJRxqHd7wMz3jttdyA5qMaIIJFJBDEn9_-9ERG3xxxbn0_byxviF0gJVH0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Exam Fraud Prevention and Class Concentration Improvement System for an Online Environment</title><source>IEEE Xplore All Conference Series</source><creator>Ko, Min Soo ; Joo, Heeyoung ; Song, Hyok</creator><creatorcontrib>Ko, Min Soo ; Joo, Heeyoung ; Song, Hyok</creatorcontrib><description>This paper presents exam fraud prevention and class concentration improvement system for an online environment. The proposed system consists of deep learning-based face analysis, video analysis, and action recognition modules. The face analysis module first detects a face and performs face recognition for identification. Then, face spoofing detection is performed to determine if it is a fraud face, and gaze estimation and facial expression recognition are conducted to inspect the student's condition. And the video analysis module identifies whether the current image is the correct online class or exam state and detects inappropriate objects around it. Finally, the action recognition module determines abnormal online class or exam behavior. For performing on client devices., all deep learning models are optimized and converted through ONNX to be operated in an internet browser environment. The proposed system required about 300ms to analyze an image in a typical laptop computer.</description><identifier>EISSN: 2767-7699</identifier><identifier>EISBN: 9781665409346</identifier><identifier>EISBN: 1665409347</identifier><identifier>DOI: 10.1109/ICEIC54506.2022.9748283</identifier><language>eng</language><publisher>IEEE</publisher><subject>action recognition ; Computational modeling ; Deep learning ; Estimation ; face analysis ; Face recognition ; Image recognition ; online class ; Performance evaluation ; Portable computers</subject><ispartof>2022 International Conference on Electronics, Information, and Communication (ICEIC), 2022, p.1-2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9748283$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9748283$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ko, Min Soo</creatorcontrib><creatorcontrib>Joo, Heeyoung</creatorcontrib><creatorcontrib>Song, Hyok</creatorcontrib><title>Exam Fraud Prevention and Class Concentration Improvement System for an Online Environment</title><title>2022 International Conference on Electronics, Information, and Communication (ICEIC)</title><addtitle>ICEIC</addtitle><description>This paper presents exam fraud prevention and class concentration improvement system for an online environment. The proposed system consists of deep learning-based face analysis, video analysis, and action recognition modules. The face analysis module first detects a face and performs face recognition for identification. Then, face spoofing detection is performed to determine if it is a fraud face, and gaze estimation and facial expression recognition are conducted to inspect the student's condition. And the video analysis module identifies whether the current image is the correct online class or exam state and detects inappropriate objects around it. Finally, the action recognition module determines abnormal online class or exam behavior. For performing on client devices., all deep learning models are optimized and converted through ONNX to be operated in an internet browser environment. The proposed system required about 300ms to analyze an image in a typical laptop computer.</description><subject>action recognition</subject><subject>Computational modeling</subject><subject>Deep learning</subject><subject>Estimation</subject><subject>face analysis</subject><subject>Face recognition</subject><subject>Image recognition</subject><subject>online class</subject><subject>Performance evaluation</subject><subject>Portable computers</subject><issn>2767-7699</issn><isbn>9781665409346</isbn><isbn>1665409347</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1Kw0AUhUdBsNQ-gQvnBVLv_M8sJaQaKFRQN27KtHMDI82kTGKwb2-sXR34-DgcDiEPDJaMgXusy6oulVSglxw4XzojLbfiiiycsUxrJcEJqa_JjBttCqOduyWLvv8CAMFBOCtm5LP68S1dZf8d6GvGEdMQu0R9CrQ8-L6nZZf2E8z-zOv2mLsR24nQt1M_YEubLk863aRDTEirNMbcpT_hjtw0_tDj4pJz8rGq3suXYr15rsundRGnEUPhwEtshJFamSDVjmnOkYvAd1xaKYJRxqHd7wMz3jttdyA5qMaIIJFJBDEn9_-9ERG3xxxbn0_byxviF0gJVH0</recordid><startdate>20220206</startdate><enddate>20220206</enddate><creator>Ko, Min Soo</creator><creator>Joo, Heeyoung</creator><creator>Song, Hyok</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20220206</creationdate><title>Exam Fraud Prevention and Class Concentration Improvement System for an Online Environment</title><author>Ko, Min Soo ; Joo, Heeyoung ; Song, Hyok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-90a4ef374657d45b1622e23d2b24843d7579e8ccd17aa968b04205f73d4e14e03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>action recognition</topic><topic>Computational modeling</topic><topic>Deep learning</topic><topic>Estimation</topic><topic>face analysis</topic><topic>Face recognition</topic><topic>Image recognition</topic><topic>online class</topic><topic>Performance evaluation</topic><topic>Portable computers</topic><toplevel>online_resources</toplevel><creatorcontrib>Ko, Min Soo</creatorcontrib><creatorcontrib>Joo, Heeyoung</creatorcontrib><creatorcontrib>Song, Hyok</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ko, Min Soo</au><au>Joo, Heeyoung</au><au>Song, Hyok</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Exam Fraud Prevention and Class Concentration Improvement System for an Online Environment</atitle><btitle>2022 International Conference on Electronics, Information, and Communication (ICEIC)</btitle><stitle>ICEIC</stitle><date>2022-02-06</date><risdate>2022</risdate><spage>1</spage><epage>2</epage><pages>1-2</pages><eissn>2767-7699</eissn><eisbn>9781665409346</eisbn><eisbn>1665409347</eisbn><abstract>This paper presents exam fraud prevention and class concentration improvement system for an online environment. The proposed system consists of deep learning-based face analysis, video analysis, and action recognition modules. The face analysis module first detects a face and performs face recognition for identification. Then, face spoofing detection is performed to determine if it is a fraud face, and gaze estimation and facial expression recognition are conducted to inspect the student's condition. And the video analysis module identifies whether the current image is the correct online class or exam state and detects inappropriate objects around it. Finally, the action recognition module determines abnormal online class or exam behavior. For performing on client devices., all deep learning models are optimized and converted through ONNX to be operated in an internet browser environment. The proposed system required about 300ms to analyze an image in a typical laptop computer.</abstract><pub>IEEE</pub><doi>10.1109/ICEIC54506.2022.9748283</doi><tpages>2</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2767-7699
ispartof 2022 International Conference on Electronics, Information, and Communication (ICEIC), 2022, p.1-2
issn 2767-7699
language eng
recordid cdi_ieee_primary_9748283
source IEEE Xplore All Conference Series
subjects action recognition
Computational modeling
Deep learning
Estimation
face analysis
Face recognition
Image recognition
online class
Performance evaluation
Portable computers
title Exam Fraud Prevention and Class Concentration Improvement System for an Online Environment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T16%3A18%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Exam%20Fraud%20Prevention%20and%20Class%20Concentration%20Improvement%20System%20for%20an%20Online%20Environment&rft.btitle=2022%20International%20Conference%20on%20Electronics,%20Information,%20and%20Communication%20(ICEIC)&rft.au=Ko,%20Min%20Soo&rft.date=2022-02-06&rft.spage=1&rft.epage=2&rft.pages=1-2&rft.eissn=2767-7699&rft_id=info:doi/10.1109/ICEIC54506.2022.9748283&rft.eisbn=9781665409346&rft.eisbn_list=1665409347&rft_dat=%3Cieee_CHZPO%3E9748283%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-90a4ef374657d45b1622e23d2b24843d7579e8ccd17aa968b04205f73d4e14e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9748283&rfr_iscdi=true