Loading…
The Laplace Microarchitecture for Tracking Data Uncertainty
This article presents Laplace, a microarchitecture for tracking machine representations of probability distributions paired with architectural state. Laplace uses in-processor distribution representations, which are approximations of probability distributions just as floating-point number representa...
Saved in:
Published in: | IEEE MICRO 2022-07, Vol.42 (4), p.78-86 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c173t-cadea8d73edd6afdbb71312ee5b03198b2cc6bba19f3a4c57493f0906bd3502a3 |
container_end_page | 86 |
container_issue | 4 |
container_start_page | 78 |
container_title | IEEE MICRO |
container_volume | 42 |
creator | Tsoutsouras, Vasileios Kaparounakis, Orestis Samarakoon, Chatura Bilgin, Bilgesu Meech, James Heck, Jan Stanley-Marbell, Phillip |
description | This article presents Laplace, a microarchitecture for tracking machine representations of probability distributions paired with architectural state. Laplace uses in-processor distribution representations, which are approximations of probability distributions just as floating-point number representations are approximations of real-valued numbers. The article presents two sets of instruction set architecture (ISA) extensions to 1) provide a mechanism to initialize distributional information in the microarchitecture; and 2) to allow applications to query statistics of the distributional information without exposing the uncertainty representations above the ISA. Unlike existing methods for uncertainty tracking, which require software to be rewritten in a domain-specific language or extensive source-level changes, Laplace achieves all of these benefits while requiring no changes to existing binaries to track uncertainty through them. Compared to repeated Monte Carlo re-executions of applications on a conventional microarchitecture, Laplace achieves the same level of uncertainty tracking accuracy with 2,076× fewer executed instructions on average (up to 21,343× fewer). |
doi_str_mv | 10.1109/MM.2022.3166067 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9756254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9756254</ieee_id><sourcerecordid>2681953664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c173t-cadea8d73edd6afdbb71312ee5b03198b2cc6bba19f3a4c57493f0906bd3502a3</originalsourceid><addsrcrecordid>eNo9kL9PwzAQhS0EEqUwM7BEYk57thM7FhMq5YfUiKWdrbNzoSklKY479L8nVSumW773nu5j7J7DhHMw07KcCBBiIrlSoPQFG3EjdZrxTF6yEQgtUq6luGY3fb8BgFxAMWJPyzUlC9xt0VNSNj50GPy6ieTjPlBSdyFZBvTfTfuVvGDEZNV6ChGbNh5u2VWN257uznfMVq_z5ew9XXy-fcyeF6kfBmPqsSIsKi2pqhTWlXOaSy6IcgeSm8IJ75VzyE0tMfO5zoyswYBylcxBoByzx1PvLnS_e-qj3XT70A6TVqiCm1wqlQ3U9EQNP_R9oNruQvOD4WA52KMhW5b2aMieDQ2Jh1OiIaJ_2uhciTyTfy5lYWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2681953664</pqid></control><display><type>article</type><title>The Laplace Microarchitecture for Tracking Data Uncertainty</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Tsoutsouras, Vasileios ; Kaparounakis, Orestis ; Samarakoon, Chatura ; Bilgin, Bilgesu ; Meech, James ; Heck, Jan ; Stanley-Marbell, Phillip</creator><creatorcontrib>Tsoutsouras, Vasileios ; Kaparounakis, Orestis ; Samarakoon, Chatura ; Bilgin, Bilgesu ; Meech, James ; Heck, Jan ; Stanley-Marbell, Phillip</creatorcontrib><description>This article presents Laplace, a microarchitecture for tracking machine representations of probability distributions paired with architectural state. Laplace uses in-processor distribution representations, which are approximations of probability distributions just as floating-point number representations are approximations of real-valued numbers. The article presents two sets of instruction set architecture (ISA) extensions to 1) provide a mechanism to initialize distributional information in the microarchitecture; and 2) to allow applications to query statistics of the distributional information without exposing the uncertainty representations above the ISA. Unlike existing methods for uncertainty tracking, which require software to be rewritten in a domain-specific language or extensive source-level changes, Laplace achieves all of these benefits while requiring no changes to existing binaries to track uncertainty through them. Compared to repeated Monte Carlo re-executions of applications on a conventional microarchitecture, Laplace achieves the same level of uncertainty tracking accuracy with 2,076× fewer executed instructions on average (up to 21,343× fewer).</description><identifier>ISSN: 0272-1732</identifier><identifier>EISSN: 1937-4143</identifier><identifier>DOI: 10.1109/MM.2022.3166067</identifier><identifier>CODEN: IEMIDZ</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Approximation ; Arithmetic ; arithmetic on distributions ; Computer architecture ; distributional representations ; Domain specific languages ; Floating point arithmetic ; Measurement uncertainty ; Microarchitecture ; Microprocessors ; Probability distribution ; Random variables ; Registers ; Representations ; RISC-V ; Tracking ; Uncertainty ; uncertainty tracking</subject><ispartof>IEEE MICRO, 2022-07, Vol.42 (4), p.78-86</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c173t-cadea8d73edd6afdbb71312ee5b03198b2cc6bba19f3a4c57493f0906bd3502a3</cites><orcidid>0000-0002-8450-9212 ; 0000-0001-5824-9763 ; 0000-0001-7752-2083 ; 0000-0002-6282-4027</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9756254$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Tsoutsouras, Vasileios</creatorcontrib><creatorcontrib>Kaparounakis, Orestis</creatorcontrib><creatorcontrib>Samarakoon, Chatura</creatorcontrib><creatorcontrib>Bilgin, Bilgesu</creatorcontrib><creatorcontrib>Meech, James</creatorcontrib><creatorcontrib>Heck, Jan</creatorcontrib><creatorcontrib>Stanley-Marbell, Phillip</creatorcontrib><title>The Laplace Microarchitecture for Tracking Data Uncertainty</title><title>IEEE MICRO</title><addtitle>MM</addtitle><description>This article presents Laplace, a microarchitecture for tracking machine representations of probability distributions paired with architectural state. Laplace uses in-processor distribution representations, which are approximations of probability distributions just as floating-point number representations are approximations of real-valued numbers. The article presents two sets of instruction set architecture (ISA) extensions to 1) provide a mechanism to initialize distributional information in the microarchitecture; and 2) to allow applications to query statistics of the distributional information without exposing the uncertainty representations above the ISA. Unlike existing methods for uncertainty tracking, which require software to be rewritten in a domain-specific language or extensive source-level changes, Laplace achieves all of these benefits while requiring no changes to existing binaries to track uncertainty through them. Compared to repeated Monte Carlo re-executions of applications on a conventional microarchitecture, Laplace achieves the same level of uncertainty tracking accuracy with 2,076× fewer executed instructions on average (up to 21,343× fewer).</description><subject>Approximation</subject><subject>Arithmetic</subject><subject>arithmetic on distributions</subject><subject>Computer architecture</subject><subject>distributional representations</subject><subject>Domain specific languages</subject><subject>Floating point arithmetic</subject><subject>Measurement uncertainty</subject><subject>Microarchitecture</subject><subject>Microprocessors</subject><subject>Probability distribution</subject><subject>Random variables</subject><subject>Registers</subject><subject>Representations</subject><subject>RISC-V</subject><subject>Tracking</subject><subject>Uncertainty</subject><subject>uncertainty tracking</subject><issn>0272-1732</issn><issn>1937-4143</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kL9PwzAQhS0EEqUwM7BEYk57thM7FhMq5YfUiKWdrbNzoSklKY479L8nVSumW773nu5j7J7DhHMw07KcCBBiIrlSoPQFG3EjdZrxTF6yEQgtUq6luGY3fb8BgFxAMWJPyzUlC9xt0VNSNj50GPy6ieTjPlBSdyFZBvTfTfuVvGDEZNV6ChGbNh5u2VWN257uznfMVq_z5ew9XXy-fcyeF6kfBmPqsSIsKi2pqhTWlXOaSy6IcgeSm8IJ75VzyE0tMfO5zoyswYBylcxBoByzx1PvLnS_e-qj3XT70A6TVqiCm1wqlQ3U9EQNP_R9oNruQvOD4WA52KMhW5b2aMieDQ2Jh1OiIaJ_2uhciTyTfy5lYWQ</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Tsoutsouras, Vasileios</creator><creator>Kaparounakis, Orestis</creator><creator>Samarakoon, Chatura</creator><creator>Bilgin, Bilgesu</creator><creator>Meech, James</creator><creator>Heck, Jan</creator><creator>Stanley-Marbell, Phillip</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8450-9212</orcidid><orcidid>https://orcid.org/0000-0001-5824-9763</orcidid><orcidid>https://orcid.org/0000-0001-7752-2083</orcidid><orcidid>https://orcid.org/0000-0002-6282-4027</orcidid></search><sort><creationdate>20220701</creationdate><title>The Laplace Microarchitecture for Tracking Data Uncertainty</title><author>Tsoutsouras, Vasileios ; Kaparounakis, Orestis ; Samarakoon, Chatura ; Bilgin, Bilgesu ; Meech, James ; Heck, Jan ; Stanley-Marbell, Phillip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c173t-cadea8d73edd6afdbb71312ee5b03198b2cc6bba19f3a4c57493f0906bd3502a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Approximation</topic><topic>Arithmetic</topic><topic>arithmetic on distributions</topic><topic>Computer architecture</topic><topic>distributional representations</topic><topic>Domain specific languages</topic><topic>Floating point arithmetic</topic><topic>Measurement uncertainty</topic><topic>Microarchitecture</topic><topic>Microprocessors</topic><topic>Probability distribution</topic><topic>Random variables</topic><topic>Registers</topic><topic>Representations</topic><topic>RISC-V</topic><topic>Tracking</topic><topic>Uncertainty</topic><topic>uncertainty tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsoutsouras, Vasileios</creatorcontrib><creatorcontrib>Kaparounakis, Orestis</creatorcontrib><creatorcontrib>Samarakoon, Chatura</creatorcontrib><creatorcontrib>Bilgin, Bilgesu</creatorcontrib><creatorcontrib>Meech, James</creatorcontrib><creatorcontrib>Heck, Jan</creatorcontrib><creatorcontrib>Stanley-Marbell, Phillip</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE MICRO</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsoutsouras, Vasileios</au><au>Kaparounakis, Orestis</au><au>Samarakoon, Chatura</au><au>Bilgin, Bilgesu</au><au>Meech, James</au><au>Heck, Jan</au><au>Stanley-Marbell, Phillip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Laplace Microarchitecture for Tracking Data Uncertainty</atitle><jtitle>IEEE MICRO</jtitle><stitle>MM</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>42</volume><issue>4</issue><spage>78</spage><epage>86</epage><pages>78-86</pages><issn>0272-1732</issn><eissn>1937-4143</eissn><coden>IEMIDZ</coden><abstract>This article presents Laplace, a microarchitecture for tracking machine representations of probability distributions paired with architectural state. Laplace uses in-processor distribution representations, which are approximations of probability distributions just as floating-point number representations are approximations of real-valued numbers. The article presents two sets of instruction set architecture (ISA) extensions to 1) provide a mechanism to initialize distributional information in the microarchitecture; and 2) to allow applications to query statistics of the distributional information without exposing the uncertainty representations above the ISA. Unlike existing methods for uncertainty tracking, which require software to be rewritten in a domain-specific language or extensive source-level changes, Laplace achieves all of these benefits while requiring no changes to existing binaries to track uncertainty through them. Compared to repeated Monte Carlo re-executions of applications on a conventional microarchitecture, Laplace achieves the same level of uncertainty tracking accuracy with 2,076× fewer executed instructions on average (up to 21,343× fewer).</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/MM.2022.3166067</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8450-9212</orcidid><orcidid>https://orcid.org/0000-0001-5824-9763</orcidid><orcidid>https://orcid.org/0000-0001-7752-2083</orcidid><orcidid>https://orcid.org/0000-0002-6282-4027</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-1732 |
ispartof | IEEE MICRO, 2022-07, Vol.42 (4), p.78-86 |
issn | 0272-1732 1937-4143 |
language | eng |
recordid | cdi_ieee_primary_9756254 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Approximation Arithmetic arithmetic on distributions Computer architecture distributional representations Domain specific languages Floating point arithmetic Measurement uncertainty Microarchitecture Microprocessors Probability distribution Random variables Registers Representations RISC-V Tracking Uncertainty uncertainty tracking |
title | The Laplace Microarchitecture for Tracking Data Uncertainty |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A07%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Laplace%20Microarchitecture%20for%20Tracking%20Data%20Uncertainty&rft.jtitle=IEEE%20MICRO&rft.au=Tsoutsouras,%20Vasileios&rft.date=2022-07-01&rft.volume=42&rft.issue=4&rft.spage=78&rft.epage=86&rft.pages=78-86&rft.issn=0272-1732&rft.eissn=1937-4143&rft.coden=IEMIDZ&rft_id=info:doi/10.1109/MM.2022.3166067&rft_dat=%3Cproquest_ieee_%3E2681953664%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c173t-cadea8d73edd6afdbb71312ee5b03198b2cc6bba19f3a4c57493f0906bd3502a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2681953664&rft_id=info:pmid/&rft_ieee_id=9756254&rfr_iscdi=true |