Loading…

The Laplace Microarchitecture for Tracking Data Uncertainty

This article presents Laplace, a microarchitecture for tracking machine representations of probability distributions paired with architectural state. Laplace uses in-processor distribution representations, which are approximations of probability distributions just as floating-point number representa...

Full description

Saved in:
Bibliographic Details
Published in:IEEE MICRO 2022-07, Vol.42 (4), p.78-86
Main Authors: Tsoutsouras, Vasileios, Kaparounakis, Orestis, Samarakoon, Chatura, Bilgin, Bilgesu, Meech, James, Heck, Jan, Stanley-Marbell, Phillip
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c173t-cadea8d73edd6afdbb71312ee5b03198b2cc6bba19f3a4c57493f0906bd3502a3
container_end_page 86
container_issue 4
container_start_page 78
container_title IEEE MICRO
container_volume 42
creator Tsoutsouras, Vasileios
Kaparounakis, Orestis
Samarakoon, Chatura
Bilgin, Bilgesu
Meech, James
Heck, Jan
Stanley-Marbell, Phillip
description This article presents Laplace, a microarchitecture for tracking machine representations of probability distributions paired with architectural state. Laplace uses in-processor distribution representations, which are approximations of probability distributions just as floating-point number representations are approximations of real-valued numbers. The article presents two sets of instruction set architecture (ISA) extensions to 1) provide a mechanism to initialize distributional information in the microarchitecture; and 2) to allow applications to query statistics of the distributional information without exposing the uncertainty representations above the ISA. Unlike existing methods for uncertainty tracking, which require software to be rewritten in a domain-specific language or extensive source-level changes, Laplace achieves all of these benefits while requiring no changes to existing binaries to track uncertainty through them. Compared to repeated Monte Carlo re-executions of applications on a conventional microarchitecture, Laplace achieves the same level of uncertainty tracking accuracy with 2,076× fewer executed instructions on average (up to 21,343× fewer).
doi_str_mv 10.1109/MM.2022.3166067
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9756254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9756254</ieee_id><sourcerecordid>2681953664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c173t-cadea8d73edd6afdbb71312ee5b03198b2cc6bba19f3a4c57493f0906bd3502a3</originalsourceid><addsrcrecordid>eNo9kL9PwzAQhS0EEqUwM7BEYk57thM7FhMq5YfUiKWdrbNzoSklKY479L8nVSumW773nu5j7J7DhHMw07KcCBBiIrlSoPQFG3EjdZrxTF6yEQgtUq6luGY3fb8BgFxAMWJPyzUlC9xt0VNSNj50GPy6ieTjPlBSdyFZBvTfTfuVvGDEZNV6ChGbNh5u2VWN257uznfMVq_z5ew9XXy-fcyeF6kfBmPqsSIsKi2pqhTWlXOaSy6IcgeSm8IJ75VzyE0tMfO5zoyswYBylcxBoByzx1PvLnS_e-qj3XT70A6TVqiCm1wqlQ3U9EQNP_R9oNruQvOD4WA52KMhW5b2aMieDQ2Jh1OiIaJ_2uhciTyTfy5lYWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2681953664</pqid></control><display><type>article</type><title>The Laplace Microarchitecture for Tracking Data Uncertainty</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Tsoutsouras, Vasileios ; Kaparounakis, Orestis ; Samarakoon, Chatura ; Bilgin, Bilgesu ; Meech, James ; Heck, Jan ; Stanley-Marbell, Phillip</creator><creatorcontrib>Tsoutsouras, Vasileios ; Kaparounakis, Orestis ; Samarakoon, Chatura ; Bilgin, Bilgesu ; Meech, James ; Heck, Jan ; Stanley-Marbell, Phillip</creatorcontrib><description>This article presents Laplace, a microarchitecture for tracking machine representations of probability distributions paired with architectural state. Laplace uses in-processor distribution representations, which are approximations of probability distributions just as floating-point number representations are approximations of real-valued numbers. The article presents two sets of instruction set architecture (ISA) extensions to 1) provide a mechanism to initialize distributional information in the microarchitecture; and 2) to allow applications to query statistics of the distributional information without exposing the uncertainty representations above the ISA. Unlike existing methods for uncertainty tracking, which require software to be rewritten in a domain-specific language or extensive source-level changes, Laplace achieves all of these benefits while requiring no changes to existing binaries to track uncertainty through them. Compared to repeated Monte Carlo re-executions of applications on a conventional microarchitecture, Laplace achieves the same level of uncertainty tracking accuracy with 2,076× fewer executed instructions on average (up to 21,343× fewer).</description><identifier>ISSN: 0272-1732</identifier><identifier>EISSN: 1937-4143</identifier><identifier>DOI: 10.1109/MM.2022.3166067</identifier><identifier>CODEN: IEMIDZ</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Approximation ; Arithmetic ; arithmetic on distributions ; Computer architecture ; distributional representations ; Domain specific languages ; Floating point arithmetic ; Measurement uncertainty ; Microarchitecture ; Microprocessors ; Probability distribution ; Random variables ; Registers ; Representations ; RISC-V ; Tracking ; Uncertainty ; uncertainty tracking</subject><ispartof>IEEE MICRO, 2022-07, Vol.42 (4), p.78-86</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c173t-cadea8d73edd6afdbb71312ee5b03198b2cc6bba19f3a4c57493f0906bd3502a3</cites><orcidid>0000-0002-8450-9212 ; 0000-0001-5824-9763 ; 0000-0001-7752-2083 ; 0000-0002-6282-4027</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9756254$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Tsoutsouras, Vasileios</creatorcontrib><creatorcontrib>Kaparounakis, Orestis</creatorcontrib><creatorcontrib>Samarakoon, Chatura</creatorcontrib><creatorcontrib>Bilgin, Bilgesu</creatorcontrib><creatorcontrib>Meech, James</creatorcontrib><creatorcontrib>Heck, Jan</creatorcontrib><creatorcontrib>Stanley-Marbell, Phillip</creatorcontrib><title>The Laplace Microarchitecture for Tracking Data Uncertainty</title><title>IEEE MICRO</title><addtitle>MM</addtitle><description>This article presents Laplace, a microarchitecture for tracking machine representations of probability distributions paired with architectural state. Laplace uses in-processor distribution representations, which are approximations of probability distributions just as floating-point number representations are approximations of real-valued numbers. The article presents two sets of instruction set architecture (ISA) extensions to 1) provide a mechanism to initialize distributional information in the microarchitecture; and 2) to allow applications to query statistics of the distributional information without exposing the uncertainty representations above the ISA. Unlike existing methods for uncertainty tracking, which require software to be rewritten in a domain-specific language or extensive source-level changes, Laplace achieves all of these benefits while requiring no changes to existing binaries to track uncertainty through them. Compared to repeated Monte Carlo re-executions of applications on a conventional microarchitecture, Laplace achieves the same level of uncertainty tracking accuracy with 2,076× fewer executed instructions on average (up to 21,343× fewer).</description><subject>Approximation</subject><subject>Arithmetic</subject><subject>arithmetic on distributions</subject><subject>Computer architecture</subject><subject>distributional representations</subject><subject>Domain specific languages</subject><subject>Floating point arithmetic</subject><subject>Measurement uncertainty</subject><subject>Microarchitecture</subject><subject>Microprocessors</subject><subject>Probability distribution</subject><subject>Random variables</subject><subject>Registers</subject><subject>Representations</subject><subject>RISC-V</subject><subject>Tracking</subject><subject>Uncertainty</subject><subject>uncertainty tracking</subject><issn>0272-1732</issn><issn>1937-4143</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kL9PwzAQhS0EEqUwM7BEYk57thM7FhMq5YfUiKWdrbNzoSklKY479L8nVSumW773nu5j7J7DhHMw07KcCBBiIrlSoPQFG3EjdZrxTF6yEQgtUq6luGY3fb8BgFxAMWJPyzUlC9xt0VNSNj50GPy6ieTjPlBSdyFZBvTfTfuVvGDEZNV6ChGbNh5u2VWN257uznfMVq_z5ew9XXy-fcyeF6kfBmPqsSIsKi2pqhTWlXOaSy6IcgeSm8IJ75VzyE0tMfO5zoyswYBylcxBoByzx1PvLnS_e-qj3XT70A6TVqiCm1wqlQ3U9EQNP_R9oNruQvOD4WA52KMhW5b2aMieDQ2Jh1OiIaJ_2uhciTyTfy5lYWQ</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Tsoutsouras, Vasileios</creator><creator>Kaparounakis, Orestis</creator><creator>Samarakoon, Chatura</creator><creator>Bilgin, Bilgesu</creator><creator>Meech, James</creator><creator>Heck, Jan</creator><creator>Stanley-Marbell, Phillip</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8450-9212</orcidid><orcidid>https://orcid.org/0000-0001-5824-9763</orcidid><orcidid>https://orcid.org/0000-0001-7752-2083</orcidid><orcidid>https://orcid.org/0000-0002-6282-4027</orcidid></search><sort><creationdate>20220701</creationdate><title>The Laplace Microarchitecture for Tracking Data Uncertainty</title><author>Tsoutsouras, Vasileios ; Kaparounakis, Orestis ; Samarakoon, Chatura ; Bilgin, Bilgesu ; Meech, James ; Heck, Jan ; Stanley-Marbell, Phillip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c173t-cadea8d73edd6afdbb71312ee5b03198b2cc6bba19f3a4c57493f0906bd3502a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Approximation</topic><topic>Arithmetic</topic><topic>arithmetic on distributions</topic><topic>Computer architecture</topic><topic>distributional representations</topic><topic>Domain specific languages</topic><topic>Floating point arithmetic</topic><topic>Measurement uncertainty</topic><topic>Microarchitecture</topic><topic>Microprocessors</topic><topic>Probability distribution</topic><topic>Random variables</topic><topic>Registers</topic><topic>Representations</topic><topic>RISC-V</topic><topic>Tracking</topic><topic>Uncertainty</topic><topic>uncertainty tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsoutsouras, Vasileios</creatorcontrib><creatorcontrib>Kaparounakis, Orestis</creatorcontrib><creatorcontrib>Samarakoon, Chatura</creatorcontrib><creatorcontrib>Bilgin, Bilgesu</creatorcontrib><creatorcontrib>Meech, James</creatorcontrib><creatorcontrib>Heck, Jan</creatorcontrib><creatorcontrib>Stanley-Marbell, Phillip</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE MICRO</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsoutsouras, Vasileios</au><au>Kaparounakis, Orestis</au><au>Samarakoon, Chatura</au><au>Bilgin, Bilgesu</au><au>Meech, James</au><au>Heck, Jan</au><au>Stanley-Marbell, Phillip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Laplace Microarchitecture for Tracking Data Uncertainty</atitle><jtitle>IEEE MICRO</jtitle><stitle>MM</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>42</volume><issue>4</issue><spage>78</spage><epage>86</epage><pages>78-86</pages><issn>0272-1732</issn><eissn>1937-4143</eissn><coden>IEMIDZ</coden><abstract>This article presents Laplace, a microarchitecture for tracking machine representations of probability distributions paired with architectural state. Laplace uses in-processor distribution representations, which are approximations of probability distributions just as floating-point number representations are approximations of real-valued numbers. The article presents two sets of instruction set architecture (ISA) extensions to 1) provide a mechanism to initialize distributional information in the microarchitecture; and 2) to allow applications to query statistics of the distributional information without exposing the uncertainty representations above the ISA. Unlike existing methods for uncertainty tracking, which require software to be rewritten in a domain-specific language or extensive source-level changes, Laplace achieves all of these benefits while requiring no changes to existing binaries to track uncertainty through them. Compared to repeated Monte Carlo re-executions of applications on a conventional microarchitecture, Laplace achieves the same level of uncertainty tracking accuracy with 2,076× fewer executed instructions on average (up to 21,343× fewer).</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/MM.2022.3166067</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8450-9212</orcidid><orcidid>https://orcid.org/0000-0001-5824-9763</orcidid><orcidid>https://orcid.org/0000-0001-7752-2083</orcidid><orcidid>https://orcid.org/0000-0002-6282-4027</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0272-1732
ispartof IEEE MICRO, 2022-07, Vol.42 (4), p.78-86
issn 0272-1732
1937-4143
language eng
recordid cdi_ieee_primary_9756254
source IEEE Electronic Library (IEL) Journals
subjects Approximation
Arithmetic
arithmetic on distributions
Computer architecture
distributional representations
Domain specific languages
Floating point arithmetic
Measurement uncertainty
Microarchitecture
Microprocessors
Probability distribution
Random variables
Registers
Representations
RISC-V
Tracking
Uncertainty
uncertainty tracking
title The Laplace Microarchitecture for Tracking Data Uncertainty
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A07%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Laplace%20Microarchitecture%20for%20Tracking%20Data%20Uncertainty&rft.jtitle=IEEE%20MICRO&rft.au=Tsoutsouras,%20Vasileios&rft.date=2022-07-01&rft.volume=42&rft.issue=4&rft.spage=78&rft.epage=86&rft.pages=78-86&rft.issn=0272-1732&rft.eissn=1937-4143&rft.coden=IEMIDZ&rft_id=info:doi/10.1109/MM.2022.3166067&rft_dat=%3Cproquest_ieee_%3E2681953664%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c173t-cadea8d73edd6afdbb71312ee5b03198b2cc6bba19f3a4c57493f0906bd3502a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2681953664&rft_id=info:pmid/&rft_ieee_id=9756254&rfr_iscdi=true