Loading…

Denoisereg: Unsupervised Joint Denoising and Registration of Time-Lapse Live Cell Microscopy Images Using Deep Learning

Image registration is important for analysing time-lapse live cell microscopy images. However, this is challenging due to significant image noise and complex cell movement. We propose a novel end-to-end trainable deep neural network for joint denoising and affine registration of temporal live cell m...

Full description

Saved in:
Bibliographic Details
Main Authors: Celikay, Kerem, Chagin, Vadim O., Cristina Cardoso, M., Rohr, Karl
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c186t-ab85862035e91bd135fe459251bb064adebae97024f7df963d67224902531fd33
cites
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Celikay, Kerem
Chagin, Vadim O.
Cristina Cardoso, M.
Rohr, Karl
description Image registration is important for analysing time-lapse live cell microscopy images. However, this is challenging due to significant image noise and complex cell movement. We propose a novel end-to-end trainable deep neural network for joint denoising and affine registration of temporal live cell microscopy images. Our network is trained unsupervised, and only a single network is required for both tasks which reduces overfitting. Our experiments show that the proposed network performs better than deep affine registration without denoising, and better than sequential deep denoising and affine registration. In combination with deep non-rigid registration, we outperform state-of-the-art non-rigid registration methods.
doi_str_mv 10.1109/ISBI52829.2022.9761507
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9761507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9761507</ieee_id><sourcerecordid>9761507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c186t-ab85862035e91bd135fe459251bb064adebae97024f7df963d67224902531fd33</originalsourceid><addsrcrecordid>eNotkF1LwzAYhaMgOOd-gSD5A53Jm4823unmR6Ui6HY90uVtiWxpSepk_97hdm4ODweei0PILWdTzpm5K78eSwUFmCkwgKnJNVcsPyNXXGslwYCAczLiRqqskAouySSlb3ZILqVgckR-5xg6nzBie0-XIf30GHcHdvSt82Ggx9mHltrg6Ce2Pg3RDr4LtGvowm8xq2yfkFZ-h3SGmw199-vYpXXX72m5tS0muvwXzBF7WqGN4UDX5KKxm4STU4_J8vlpMXvNqo-XcvZQZWte6CGzdaEKDUwoNLx2XKgGpTKgeF0zLa3D2qLJGcgmd43RwukcQBoGSvDGCTEmN0evR8RVH_3Wxv3q9JP4A5o5Xb8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Denoisereg: Unsupervised Joint Denoising and Registration of Time-Lapse Live Cell Microscopy Images Using Deep Learning</title><source>IEEE Xplore All Conference Series</source><creator>Celikay, Kerem ; Chagin, Vadim O. ; Cristina Cardoso, M. ; Rohr, Karl</creator><creatorcontrib>Celikay, Kerem ; Chagin, Vadim O. ; Cristina Cardoso, M. ; Rohr, Karl</creatorcontrib><description>Image registration is important for analysing time-lapse live cell microscopy images. However, this is challenging due to significant image noise and complex cell movement. We propose a novel end-to-end trainable deep neural network for joint denoising and affine registration of temporal live cell microscopy images. Our network is trained unsupervised, and only a single network is required for both tasks which reduces overfitting. Our experiments show that the proposed network performs better than deep affine registration without denoising, and better than sequential deep denoising and affine registration. In combination with deep non-rigid registration, we outperform state-of-the-art non-rigid registration methods.</description><identifier>EISSN: 1945-8452</identifier><identifier>EISBN: 1665429232</identifier><identifier>EISBN: 9781665429238</identifier><identifier>DOI: 10.1109/ISBI52829.2022.9761507</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical Imaging ; Deep learning ; Denoising ; Fluorescence Microscopy Images ; Image registration ; Microscopy ; Neural networks ; Noise reduction ; Task analysis ; Three-dimensional displays</subject><ispartof>2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), 2022, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c186t-ab85862035e91bd135fe459251bb064adebae97024f7df963d67224902531fd33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9761507$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9761507$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Celikay, Kerem</creatorcontrib><creatorcontrib>Chagin, Vadim O.</creatorcontrib><creatorcontrib>Cristina Cardoso, M.</creatorcontrib><creatorcontrib>Rohr, Karl</creatorcontrib><title>Denoisereg: Unsupervised Joint Denoising and Registration of Time-Lapse Live Cell Microscopy Images Using Deep Learning</title><title>2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)</title><addtitle>ISBI</addtitle><description>Image registration is important for analysing time-lapse live cell microscopy images. However, this is challenging due to significant image noise and complex cell movement. We propose a novel end-to-end trainable deep neural network for joint denoising and affine registration of temporal live cell microscopy images. Our network is trained unsupervised, and only a single network is required for both tasks which reduces overfitting. Our experiments show that the proposed network performs better than deep affine registration without denoising, and better than sequential deep denoising and affine registration. In combination with deep non-rigid registration, we outperform state-of-the-art non-rigid registration methods.</description><subject>Biomedical Imaging</subject><subject>Deep learning</subject><subject>Denoising</subject><subject>Fluorescence Microscopy Images</subject><subject>Image registration</subject><subject>Microscopy</subject><subject>Neural networks</subject><subject>Noise reduction</subject><subject>Task analysis</subject><subject>Three-dimensional displays</subject><issn>1945-8452</issn><isbn>1665429232</isbn><isbn>9781665429238</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkF1LwzAYhaMgOOd-gSD5A53Jm4823unmR6Ui6HY90uVtiWxpSepk_97hdm4ODweei0PILWdTzpm5K78eSwUFmCkwgKnJNVcsPyNXXGslwYCAczLiRqqskAouySSlb3ZILqVgckR-5xg6nzBie0-XIf30GHcHdvSt82Ggx9mHltrg6Ce2Pg3RDr4LtGvowm8xq2yfkFZ-h3SGmw199-vYpXXX72m5tS0muvwXzBF7WqGN4UDX5KKxm4STU4_J8vlpMXvNqo-XcvZQZWte6CGzdaEKDUwoNLx2XKgGpTKgeF0zLa3D2qLJGcgmd43RwukcQBoGSvDGCTEmN0evR8RVH_3Wxv3q9JP4A5o5Xb8</recordid><startdate>20220328</startdate><enddate>20220328</enddate><creator>Celikay, Kerem</creator><creator>Chagin, Vadim O.</creator><creator>Cristina Cardoso, M.</creator><creator>Rohr, Karl</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20220328</creationdate><title>Denoisereg: Unsupervised Joint Denoising and Registration of Time-Lapse Live Cell Microscopy Images Using Deep Learning</title><author>Celikay, Kerem ; Chagin, Vadim O. ; Cristina Cardoso, M. ; Rohr, Karl</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c186t-ab85862035e91bd135fe459251bb064adebae97024f7df963d67224902531fd33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biomedical Imaging</topic><topic>Deep learning</topic><topic>Denoising</topic><topic>Fluorescence Microscopy Images</topic><topic>Image registration</topic><topic>Microscopy</topic><topic>Neural networks</topic><topic>Noise reduction</topic><topic>Task analysis</topic><topic>Three-dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Celikay, Kerem</creatorcontrib><creatorcontrib>Chagin, Vadim O.</creatorcontrib><creatorcontrib>Cristina Cardoso, M.</creatorcontrib><creatorcontrib>Rohr, Karl</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Celikay, Kerem</au><au>Chagin, Vadim O.</au><au>Cristina Cardoso, M.</au><au>Rohr, Karl</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Denoisereg: Unsupervised Joint Denoising and Registration of Time-Lapse Live Cell Microscopy Images Using Deep Learning</atitle><btitle>2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)</btitle><stitle>ISBI</stitle><date>2022-03-28</date><risdate>2022</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><eissn>1945-8452</eissn><eisbn>1665429232</eisbn><eisbn>9781665429238</eisbn><abstract>Image registration is important for analysing time-lapse live cell microscopy images. However, this is challenging due to significant image noise and complex cell movement. We propose a novel end-to-end trainable deep neural network for joint denoising and affine registration of temporal live cell microscopy images. Our network is trained unsupervised, and only a single network is required for both tasks which reduces overfitting. Our experiments show that the proposed network performs better than deep affine registration without denoising, and better than sequential deep denoising and affine registration. In combination with deep non-rigid registration, we outperform state-of-the-art non-rigid registration methods.</abstract><pub>IEEE</pub><doi>10.1109/ISBI52829.2022.9761507</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1945-8452
ispartof 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), 2022, p.1-4
issn 1945-8452
language eng
recordid cdi_ieee_primary_9761507
source IEEE Xplore All Conference Series
subjects Biomedical Imaging
Deep learning
Denoising
Fluorescence Microscopy Images
Image registration
Microscopy
Neural networks
Noise reduction
Task analysis
Three-dimensional displays
title Denoisereg: Unsupervised Joint Denoising and Registration of Time-Lapse Live Cell Microscopy Images Using Deep Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A43%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Denoisereg:%20Unsupervised%20Joint%20Denoising%20and%20Registration%20of%20Time-Lapse%20Live%20Cell%20Microscopy%20Images%20Using%20Deep%20Learning&rft.btitle=2022%20IEEE%2019th%20International%20Symposium%20on%20Biomedical%20Imaging%20(ISBI)&rft.au=Celikay,%20Kerem&rft.date=2022-03-28&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.eissn=1945-8452&rft_id=info:doi/10.1109/ISBI52829.2022.9761507&rft.eisbn=1665429232&rft.eisbn_list=9781665429238&rft_dat=%3Cieee_CHZPO%3E9761507%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c186t-ab85862035e91bd135fe459251bb064adebae97024f7df963d67224902531fd33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9761507&rfr_iscdi=true