Loading…
Demonstrating the Risk of Imbalanced Datasets in Chest X-Ray Image-Based Diagnostics by Prototypical Relevance Propagation
The recent trend of integrating multi-source Chest X-Ray datasets to improve automated diagnostics raises concerns that models learn to exploit source-specific correlations to improve performance by recognizing the source domain of an image rather than the medical pathology. We hypothesize that this...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Gautam, Srishti Hohne, Marina M.-C. Hansen, Stine Jenssen, Robert Kampffmeyer, Michael |
description | The recent trend of integrating multi-source Chest X-Ray datasets to improve automated diagnostics raises concerns that models learn to exploit source-specific correlations to improve performance by recognizing the source domain of an image rather than the medical pathology. We hypothesize that this effect is enforced by and leverages label-imbalance across the source domains, i.e, prevalence of a disease corresponding to a source. Therefore, in this work, we perform a thorough study of the effect of label-imbalance in multi-source training for the task of pneumonia detection on the widely used ChestX-ray14 and CheXpert datasets. The results highlight and stress the importance of using more faithful and transparent self-explaining models for automated diagnosis, thus enabling the inherent detection of spurious learning. They further illustrate that this undesirable effect of learning spurious correlations can be reduced considerably when ensuring label-balanced source domain datasets. |
doi_str_mv | 10.1109/ISBI52829.2022.9761651 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9761651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9761651</ieee_id><sourcerecordid>9761651</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-b4192fe2d35fb672ec6c7a04c84f3f503b86f7d7adde227a918cf11d438450a73</originalsourceid><addsrcrecordid>eNotkN1Kw0AQhVdBsNY-gSD7Aqm7s5tscmlbfwIFpSp4VybJbLqaJiW7CPHpTbFzM3DOxxnOMHYrxVxKkd3lb4s8hhSyOQiAeWYSmcTyjF3JJIk1ZKDgnE1kpuMo1TFcspn3X2Ico7USesJ-V7TvWh96DK6tedgR3zj_zTvL832BDbYlVXyFAT0Fz13LlzvygX9GGxxGBGuKFqM3Mg7rtvPBlZ4XA3_tu9CF4eBKbPiGGvo5Rh3lA9bjsa69ZhcWG0-z056yj8eH9-VztH55ypf368iBUCEqtMzAElQqtkVigMqkNCh0mWqrbCxUkSbWVAarigAMZjItrZSVVmNjgUZN2c1_riOi7aF3e-yH7elV6g_itF-n</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Demonstrating the Risk of Imbalanced Datasets in Chest X-Ray Image-Based Diagnostics by Prototypical Relevance Propagation</title><source>IEEE Xplore All Conference Series</source><creator>Gautam, Srishti ; Hohne, Marina M.-C. ; Hansen, Stine ; Jenssen, Robert ; Kampffmeyer, Michael</creator><creatorcontrib>Gautam, Srishti ; Hohne, Marina M.-C. ; Hansen, Stine ; Jenssen, Robert ; Kampffmeyer, Michael</creatorcontrib><description>The recent trend of integrating multi-source Chest X-Ray datasets to improve automated diagnostics raises concerns that models learn to exploit source-specific correlations to improve performance by recognizing the source domain of an image rather than the medical pathology. We hypothesize that this effect is enforced by and leverages label-imbalance across the source domains, i.e, prevalence of a disease corresponding to a source. Therefore, in this work, we perform a thorough study of the effect of label-imbalance in multi-source training for the task of pneumonia detection on the widely used ChestX-ray14 and CheXpert datasets. The results highlight and stress the importance of using more faithful and transparent self-explaining models for automated diagnosis, thus enabling the inherent detection of spurious learning. They further illustrate that this undesirable effect of learning spurious correlations can be reduced considerably when ensuring label-balanced source domain datasets.</description><identifier>EISSN: 1945-8452</identifier><identifier>EISBN: 1665429232</identifier><identifier>EISBN: 9781665429238</identifier><identifier>DOI: 10.1109/ISBI52829.2022.9761651</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artifact Detection ; Biological system modeling ; Chest X-Ray ; Correlation ; Detectors ; Explainable AI ; Pathology ; Pulmonary diseases ; Real-time systems ; Self-Explaining Models ; Spurious Learning ; Training</subject><ispartof>2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), 2022, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9761651$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,23911,23912,25121,27906,54536,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9761651$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gautam, Srishti</creatorcontrib><creatorcontrib>Hohne, Marina M.-C.</creatorcontrib><creatorcontrib>Hansen, Stine</creatorcontrib><creatorcontrib>Jenssen, Robert</creatorcontrib><creatorcontrib>Kampffmeyer, Michael</creatorcontrib><title>Demonstrating the Risk of Imbalanced Datasets in Chest X-Ray Image-Based Diagnostics by Prototypical Relevance Propagation</title><title>2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)</title><addtitle>ISBI</addtitle><description>The recent trend of integrating multi-source Chest X-Ray datasets to improve automated diagnostics raises concerns that models learn to exploit source-specific correlations to improve performance by recognizing the source domain of an image rather than the medical pathology. We hypothesize that this effect is enforced by and leverages label-imbalance across the source domains, i.e, prevalence of a disease corresponding to a source. Therefore, in this work, we perform a thorough study of the effect of label-imbalance in multi-source training for the task of pneumonia detection on the widely used ChestX-ray14 and CheXpert datasets. The results highlight and stress the importance of using more faithful and transparent self-explaining models for automated diagnosis, thus enabling the inherent detection of spurious learning. They further illustrate that this undesirable effect of learning spurious correlations can be reduced considerably when ensuring label-balanced source domain datasets.</description><subject>Artifact Detection</subject><subject>Biological system modeling</subject><subject>Chest X-Ray</subject><subject>Correlation</subject><subject>Detectors</subject><subject>Explainable AI</subject><subject>Pathology</subject><subject>Pulmonary diseases</subject><subject>Real-time systems</subject><subject>Self-Explaining Models</subject><subject>Spurious Learning</subject><subject>Training</subject><issn>1945-8452</issn><isbn>1665429232</isbn><isbn>9781665429238</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkN1Kw0AQhVdBsNY-gSD7Aqm7s5tscmlbfwIFpSp4VybJbLqaJiW7CPHpTbFzM3DOxxnOMHYrxVxKkd3lb4s8hhSyOQiAeWYSmcTyjF3JJIk1ZKDgnE1kpuMo1TFcspn3X2Ico7USesJ-V7TvWh96DK6tedgR3zj_zTvL832BDbYlVXyFAT0Fz13LlzvygX9GGxxGBGuKFqM3Mg7rtvPBlZ4XA3_tu9CF4eBKbPiGGvo5Rh3lA9bjsa69ZhcWG0-z056yj8eH9-VztH55ypf368iBUCEqtMzAElQqtkVigMqkNCh0mWqrbCxUkSbWVAarigAMZjItrZSVVmNjgUZN2c1_riOi7aF3e-yH7elV6g_itF-n</recordid><startdate>20220328</startdate><enddate>20220328</enddate><creator>Gautam, Srishti</creator><creator>Hohne, Marina M.-C.</creator><creator>Hansen, Stine</creator><creator>Jenssen, Robert</creator><creator>Kampffmeyer, Michael</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20220328</creationdate><title>Demonstrating the Risk of Imbalanced Datasets in Chest X-Ray Image-Based Diagnostics by Prototypical Relevance Propagation</title><author>Gautam, Srishti ; Hohne, Marina M.-C. ; Hansen, Stine ; Jenssen, Robert ; Kampffmeyer, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-b4192fe2d35fb672ec6c7a04c84f3f503b86f7d7adde227a918cf11d438450a73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artifact Detection</topic><topic>Biological system modeling</topic><topic>Chest X-Ray</topic><topic>Correlation</topic><topic>Detectors</topic><topic>Explainable AI</topic><topic>Pathology</topic><topic>Pulmonary diseases</topic><topic>Real-time systems</topic><topic>Self-Explaining Models</topic><topic>Spurious Learning</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Gautam, Srishti</creatorcontrib><creatorcontrib>Hohne, Marina M.-C.</creatorcontrib><creatorcontrib>Hansen, Stine</creatorcontrib><creatorcontrib>Jenssen, Robert</creatorcontrib><creatorcontrib>Kampffmeyer, Michael</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gautam, Srishti</au><au>Hohne, Marina M.-C.</au><au>Hansen, Stine</au><au>Jenssen, Robert</au><au>Kampffmeyer, Michael</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Demonstrating the Risk of Imbalanced Datasets in Chest X-Ray Image-Based Diagnostics by Prototypical Relevance Propagation</atitle><btitle>2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)</btitle><stitle>ISBI</stitle><date>2022-03-28</date><risdate>2022</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>1945-8452</eissn><eisbn>1665429232</eisbn><eisbn>9781665429238</eisbn><abstract>The recent trend of integrating multi-source Chest X-Ray datasets to improve automated diagnostics raises concerns that models learn to exploit source-specific correlations to improve performance by recognizing the source domain of an image rather than the medical pathology. We hypothesize that this effect is enforced by and leverages label-imbalance across the source domains, i.e, prevalence of a disease corresponding to a source. Therefore, in this work, we perform a thorough study of the effect of label-imbalance in multi-source training for the task of pneumonia detection on the widely used ChestX-ray14 and CheXpert datasets. The results highlight and stress the importance of using more faithful and transparent self-explaining models for automated diagnosis, thus enabling the inherent detection of spurious learning. They further illustrate that this undesirable effect of learning spurious correlations can be reduced considerably when ensuring label-balanced source domain datasets.</abstract><pub>IEEE</pub><doi>10.1109/ISBI52829.2022.9761651</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 1945-8452 |
ispartof | 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), 2022, p.1-5 |
issn | 1945-8452 |
language | eng |
recordid | cdi_ieee_primary_9761651 |
source | IEEE Xplore All Conference Series |
subjects | Artifact Detection Biological system modeling Chest X-Ray Correlation Detectors Explainable AI Pathology Pulmonary diseases Real-time systems Self-Explaining Models Spurious Learning Training |
title | Demonstrating the Risk of Imbalanced Datasets in Chest X-Ray Image-Based Diagnostics by Prototypical Relevance Propagation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A12%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Demonstrating%20the%20Risk%20of%20Imbalanced%20Datasets%20in%20Chest%20X-Ray%20Image-Based%20Diagnostics%20by%20Prototypical%20Relevance%20Propagation&rft.btitle=2022%20IEEE%2019th%20International%20Symposium%20on%20Biomedical%20Imaging%20(ISBI)&rft.au=Gautam,%20Srishti&rft.date=2022-03-28&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=1945-8452&rft_id=info:doi/10.1109/ISBI52829.2022.9761651&rft.eisbn=1665429232&rft.eisbn_list=9781665429238&rft_dat=%3Cieee_CHZPO%3E9761651%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-b4192fe2d35fb672ec6c7a04c84f3f503b86f7d7adde227a918cf11d438450a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9761651&rfr_iscdi=true |