Loading…

Reachable Set Estimation for Memristive Complex-Valued Neural Networks With Disturbances

This brief focuses on reachable set estimation for memristive complex-valued neural networks (MCVNNs) with disturbances. Based on algebraic calculation and Gronwall-Bellman inequality, the states of MCVNNs with bounded input disturbances converge within a sphere. From this, the convergence speed is...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems 2023-12, Vol.34 (12), p.11029-11034
Main Authors: Zhu, Song, Gao, Yu, Hou, Yuxin, Yang, Chunyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c351t-48409b107811a8782993de1b6066d3341d8fe396f517987da903a6da2cc7a3e33
cites cdi_FETCH-LOGICAL-c351t-48409b107811a8782993de1b6066d3341d8fe396f517987da903a6da2cc7a3e33
container_end_page 11034
container_issue 12
container_start_page 11029
container_title IEEE transaction on neural networks and learning systems
container_volume 34
creator Zhu, Song
Gao, Yu
Hou, Yuxin
Yang, Chunyu
description This brief focuses on reachable set estimation for memristive complex-valued neural networks (MCVNNs) with disturbances. Based on algebraic calculation and Gronwall-Bellman inequality, the states of MCVNNs with bounded input disturbances converge within a sphere. From this, the convergence speed is also obtained. In addition, an observer for MCVNNs is designed. Two illustrative simulations are also given to show the effectiveness of the obtained conclusions.
doi_str_mv 10.1109/TNNLS.2022.3167117
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9761803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9761803</ieee_id><sourcerecordid>2895884575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-48409b107811a8782993de1b6066d3341d8fe396f517987da903a6da2cc7a3e33</originalsourceid><addsrcrecordid>eNpdkEtv2zAMgIVhxVqk-QMdMBjYZRenoiTrcRyyrCuQZsDS102QbRpxZsepZK_rv6_apDmUFxLkR4L4CDkDOgGg5vx6sZgvJ4wyNuEgFYD6QE4YSJYyrvXHQ63uj8k4hDWNIWkmhflEjnkmhFSKn5D7P-iKlcsbTJbYJ7PQ163r626TVJ1PrrD1dWz9w2TatdsG_6e3rhmwTBY4eNfE1D92_m9I7up-lfyI7OBztykwnJKjyjUBx_s8Ijc_Z9fTX-n898Xl9Ps8LXgGfSq0oCYHqjSA00ozY3iJkEsqZcm5gFJXyI2sMlBGq9IZyp0sHSsK5ThyPiLfdne3vnsYMPS2rUOBTeM22A3BMpkJZgQwEdGv79B1N_hN_M4ybTKtRaaySLEdVfguBI-V3froxD9ZoPZFvX1Vb1_U2736uPRlf3rIWywPK2-iI_B5B9SIeBgbJUFTzp8BUneGeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895884575</pqid></control><display><type>article</type><title>Reachable Set Estimation for Memristive Complex-Valued Neural Networks With Disturbances</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhu, Song ; Gao, Yu ; Hou, Yuxin ; Yang, Chunyu</creator><creatorcontrib>Zhu, Song ; Gao, Yu ; Hou, Yuxin ; Yang, Chunyu</creatorcontrib><description>This brief focuses on reachable set estimation for memristive complex-valued neural networks (MCVNNs) with disturbances. Based on algebraic calculation and Gronwall-Bellman inequality, the states of MCVNNs with bounded input disturbances converge within a sphere. From this, the convergence speed is also obtained. In addition, an observer for MCVNNs is designed. Two illustrative simulations are also given to show the effectiveness of the obtained conclusions.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2022.3167117</identifier><identifier>PMID: 35446773</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Bounded disturbances ; complex-valued neural networks ; Convergence ; Delays ; Disturbances ; Estimation ; Learning systems ; memristor ; Memristors ; Neural networks ; Observers ; reachable set estimation ; Switches</subject><ispartof>IEEE transaction on neural networks and learning systems, 2023-12, Vol.34 (12), p.11029-11034</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-48409b107811a8782993de1b6066d3341d8fe396f517987da903a6da2cc7a3e33</citedby><cites>FETCH-LOGICAL-c351t-48409b107811a8782993de1b6066d3341d8fe396f517987da903a6da2cc7a3e33</cites><orcidid>0000-0001-5228-9406 ; 0000-0002-1590-1712</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9761803$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35446773$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Song</creatorcontrib><creatorcontrib>Gao, Yu</creatorcontrib><creatorcontrib>Hou, Yuxin</creatorcontrib><creatorcontrib>Yang, Chunyu</creatorcontrib><title>Reachable Set Estimation for Memristive Complex-Valued Neural Networks With Disturbances</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>This brief focuses on reachable set estimation for memristive complex-valued neural networks (MCVNNs) with disturbances. Based on algebraic calculation and Gronwall-Bellman inequality, the states of MCVNNs with bounded input disturbances converge within a sphere. From this, the convergence speed is also obtained. In addition, an observer for MCVNNs is designed. Two illustrative simulations are also given to show the effectiveness of the obtained conclusions.</description><subject>Bounded disturbances</subject><subject>complex-valued neural networks</subject><subject>Convergence</subject><subject>Delays</subject><subject>Disturbances</subject><subject>Estimation</subject><subject>Learning systems</subject><subject>memristor</subject><subject>Memristors</subject><subject>Neural networks</subject><subject>Observers</subject><subject>reachable set estimation</subject><subject>Switches</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkEtv2zAMgIVhxVqk-QMdMBjYZRenoiTrcRyyrCuQZsDS102QbRpxZsepZK_rv6_apDmUFxLkR4L4CDkDOgGg5vx6sZgvJ4wyNuEgFYD6QE4YSJYyrvXHQ63uj8k4hDWNIWkmhflEjnkmhFSKn5D7P-iKlcsbTJbYJ7PQ163r626TVJ1PrrD1dWz9w2TatdsG_6e3rhmwTBY4eNfE1D92_m9I7up-lfyI7OBztykwnJKjyjUBx_s8Ijc_Z9fTX-n898Xl9Ps8LXgGfSq0oCYHqjSA00ozY3iJkEsqZcm5gFJXyI2sMlBGq9IZyp0sHSsK5ThyPiLfdne3vnsYMPS2rUOBTeM22A3BMpkJZgQwEdGv79B1N_hN_M4ybTKtRaaySLEdVfguBI-V3froxD9ZoPZFvX1Vb1_U2736uPRlf3rIWywPK2-iI_B5B9SIeBgbJUFTzp8BUneGeQ</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Zhu, Song</creator><creator>Gao, Yu</creator><creator>Hou, Yuxin</creator><creator>Yang, Chunyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5228-9406</orcidid><orcidid>https://orcid.org/0000-0002-1590-1712</orcidid></search><sort><creationdate>20231201</creationdate><title>Reachable Set Estimation for Memristive Complex-Valued Neural Networks With Disturbances</title><author>Zhu, Song ; Gao, Yu ; Hou, Yuxin ; Yang, Chunyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-48409b107811a8782993de1b6066d3341d8fe396f517987da903a6da2cc7a3e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bounded disturbances</topic><topic>complex-valued neural networks</topic><topic>Convergence</topic><topic>Delays</topic><topic>Disturbances</topic><topic>Estimation</topic><topic>Learning systems</topic><topic>memristor</topic><topic>Memristors</topic><topic>Neural networks</topic><topic>Observers</topic><topic>reachable set estimation</topic><topic>Switches</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Song</creatorcontrib><creatorcontrib>Gao, Yu</creatorcontrib><creatorcontrib>Hou, Yuxin</creatorcontrib><creatorcontrib>Yang, Chunyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Song</au><au>Gao, Yu</au><au>Hou, Yuxin</au><au>Yang, Chunyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reachable Set Estimation for Memristive Complex-Valued Neural Networks With Disturbances</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>34</volume><issue>12</issue><spage>11029</spage><epage>11034</epage><pages>11029-11034</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>This brief focuses on reachable set estimation for memristive complex-valued neural networks (MCVNNs) with disturbances. Based on algebraic calculation and Gronwall-Bellman inequality, the states of MCVNNs with bounded input disturbances converge within a sphere. From this, the convergence speed is also obtained. In addition, an observer for MCVNNs is designed. Two illustrative simulations are also given to show the effectiveness of the obtained conclusions.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35446773</pmid><doi>10.1109/TNNLS.2022.3167117</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-5228-9406</orcidid><orcidid>https://orcid.org/0000-0002-1590-1712</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2023-12, Vol.34 (12), p.11029-11034
issn 2162-237X
2162-2388
language eng
recordid cdi_ieee_primary_9761803
source IEEE Electronic Library (IEL) Journals
subjects Bounded disturbances
complex-valued neural networks
Convergence
Delays
Disturbances
Estimation
Learning systems
memristor
Memristors
Neural networks
Observers
reachable set estimation
Switches
title Reachable Set Estimation for Memristive Complex-Valued Neural Networks With Disturbances
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A57%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reachable%20Set%20Estimation%20for%20Memristive%20Complex-Valued%20Neural%20Networks%20With%20Disturbances&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Zhu,%20Song&rft.date=2023-12-01&rft.volume=34&rft.issue=12&rft.spage=11029&rft.epage=11034&rft.pages=11029-11034&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2022.3167117&rft_dat=%3Cproquest_ieee_%3E2895884575%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-48409b107811a8782993de1b6066d3341d8fe396f517987da903a6da2cc7a3e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2895884575&rft_id=info:pmid/35446773&rft_ieee_id=9761803&rfr_iscdi=true