Loading…
Reachable Set Estimation for Memristive Complex-Valued Neural Networks With Disturbances
This brief focuses on reachable set estimation for memristive complex-valued neural networks (MCVNNs) with disturbances. Based on algebraic calculation and Gronwall-Bellman inequality, the states of MCVNNs with bounded input disturbances converge within a sphere. From this, the convergence speed is...
Saved in:
Published in: | IEEE transaction on neural networks and learning systems 2023-12, Vol.34 (12), p.11029-11034 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c351t-48409b107811a8782993de1b6066d3341d8fe396f517987da903a6da2cc7a3e33 |
---|---|
cites | cdi_FETCH-LOGICAL-c351t-48409b107811a8782993de1b6066d3341d8fe396f517987da903a6da2cc7a3e33 |
container_end_page | 11034 |
container_issue | 12 |
container_start_page | 11029 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 34 |
creator | Zhu, Song Gao, Yu Hou, Yuxin Yang, Chunyu |
description | This brief focuses on reachable set estimation for memristive complex-valued neural networks (MCVNNs) with disturbances. Based on algebraic calculation and Gronwall-Bellman inequality, the states of MCVNNs with bounded input disturbances converge within a sphere. From this, the convergence speed is also obtained. In addition, an observer for MCVNNs is designed. Two illustrative simulations are also given to show the effectiveness of the obtained conclusions. |
doi_str_mv | 10.1109/TNNLS.2022.3167117 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9761803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9761803</ieee_id><sourcerecordid>2895884575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-48409b107811a8782993de1b6066d3341d8fe396f517987da903a6da2cc7a3e33</originalsourceid><addsrcrecordid>eNpdkEtv2zAMgIVhxVqk-QMdMBjYZRenoiTrcRyyrCuQZsDS102QbRpxZsepZK_rv6_apDmUFxLkR4L4CDkDOgGg5vx6sZgvJ4wyNuEgFYD6QE4YSJYyrvXHQ63uj8k4hDWNIWkmhflEjnkmhFSKn5D7P-iKlcsbTJbYJ7PQ163r626TVJ1PrrD1dWz9w2TatdsG_6e3rhmwTBY4eNfE1D92_m9I7up-lfyI7OBztykwnJKjyjUBx_s8Ijc_Z9fTX-n898Xl9Ps8LXgGfSq0oCYHqjSA00ozY3iJkEsqZcm5gFJXyI2sMlBGq9IZyp0sHSsK5ThyPiLfdne3vnsYMPS2rUOBTeM22A3BMpkJZgQwEdGv79B1N_hN_M4ybTKtRaaySLEdVfguBI-V3froxD9ZoPZFvX1Vb1_U2736uPRlf3rIWywPK2-iI_B5B9SIeBgbJUFTzp8BUneGeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895884575</pqid></control><display><type>article</type><title>Reachable Set Estimation for Memristive Complex-Valued Neural Networks With Disturbances</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhu, Song ; Gao, Yu ; Hou, Yuxin ; Yang, Chunyu</creator><creatorcontrib>Zhu, Song ; Gao, Yu ; Hou, Yuxin ; Yang, Chunyu</creatorcontrib><description>This brief focuses on reachable set estimation for memristive complex-valued neural networks (MCVNNs) with disturbances. Based on algebraic calculation and Gronwall-Bellman inequality, the states of MCVNNs with bounded input disturbances converge within a sphere. From this, the convergence speed is also obtained. In addition, an observer for MCVNNs is designed. Two illustrative simulations are also given to show the effectiveness of the obtained conclusions.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2022.3167117</identifier><identifier>PMID: 35446773</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Bounded disturbances ; complex-valued neural networks ; Convergence ; Delays ; Disturbances ; Estimation ; Learning systems ; memristor ; Memristors ; Neural networks ; Observers ; reachable set estimation ; Switches</subject><ispartof>IEEE transaction on neural networks and learning systems, 2023-12, Vol.34 (12), p.11029-11034</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-48409b107811a8782993de1b6066d3341d8fe396f517987da903a6da2cc7a3e33</citedby><cites>FETCH-LOGICAL-c351t-48409b107811a8782993de1b6066d3341d8fe396f517987da903a6da2cc7a3e33</cites><orcidid>0000-0001-5228-9406 ; 0000-0002-1590-1712</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9761803$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35446773$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Song</creatorcontrib><creatorcontrib>Gao, Yu</creatorcontrib><creatorcontrib>Hou, Yuxin</creatorcontrib><creatorcontrib>Yang, Chunyu</creatorcontrib><title>Reachable Set Estimation for Memristive Complex-Valued Neural Networks With Disturbances</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>This brief focuses on reachable set estimation for memristive complex-valued neural networks (MCVNNs) with disturbances. Based on algebraic calculation and Gronwall-Bellman inequality, the states of MCVNNs with bounded input disturbances converge within a sphere. From this, the convergence speed is also obtained. In addition, an observer for MCVNNs is designed. Two illustrative simulations are also given to show the effectiveness of the obtained conclusions.</description><subject>Bounded disturbances</subject><subject>complex-valued neural networks</subject><subject>Convergence</subject><subject>Delays</subject><subject>Disturbances</subject><subject>Estimation</subject><subject>Learning systems</subject><subject>memristor</subject><subject>Memristors</subject><subject>Neural networks</subject><subject>Observers</subject><subject>reachable set estimation</subject><subject>Switches</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkEtv2zAMgIVhxVqk-QMdMBjYZRenoiTrcRyyrCuQZsDS102QbRpxZsepZK_rv6_apDmUFxLkR4L4CDkDOgGg5vx6sZgvJ4wyNuEgFYD6QE4YSJYyrvXHQ63uj8k4hDWNIWkmhflEjnkmhFSKn5D7P-iKlcsbTJbYJ7PQ163r626TVJ1PrrD1dWz9w2TatdsG_6e3rhmwTBY4eNfE1D92_m9I7up-lfyI7OBztykwnJKjyjUBx_s8Ijc_Z9fTX-n898Xl9Ps8LXgGfSq0oCYHqjSA00ozY3iJkEsqZcm5gFJXyI2sMlBGq9IZyp0sHSsK5ThyPiLfdne3vnsYMPS2rUOBTeM22A3BMpkJZgQwEdGv79B1N_hN_M4ybTKtRaaySLEdVfguBI-V3froxD9ZoPZFvX1Vb1_U2736uPRlf3rIWywPK2-iI_B5B9SIeBgbJUFTzp8BUneGeQ</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Zhu, Song</creator><creator>Gao, Yu</creator><creator>Hou, Yuxin</creator><creator>Yang, Chunyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5228-9406</orcidid><orcidid>https://orcid.org/0000-0002-1590-1712</orcidid></search><sort><creationdate>20231201</creationdate><title>Reachable Set Estimation for Memristive Complex-Valued Neural Networks With Disturbances</title><author>Zhu, Song ; Gao, Yu ; Hou, Yuxin ; Yang, Chunyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-48409b107811a8782993de1b6066d3341d8fe396f517987da903a6da2cc7a3e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bounded disturbances</topic><topic>complex-valued neural networks</topic><topic>Convergence</topic><topic>Delays</topic><topic>Disturbances</topic><topic>Estimation</topic><topic>Learning systems</topic><topic>memristor</topic><topic>Memristors</topic><topic>Neural networks</topic><topic>Observers</topic><topic>reachable set estimation</topic><topic>Switches</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Song</creatorcontrib><creatorcontrib>Gao, Yu</creatorcontrib><creatorcontrib>Hou, Yuxin</creatorcontrib><creatorcontrib>Yang, Chunyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Song</au><au>Gao, Yu</au><au>Hou, Yuxin</au><au>Yang, Chunyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reachable Set Estimation for Memristive Complex-Valued Neural Networks With Disturbances</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>34</volume><issue>12</issue><spage>11029</spage><epage>11034</epage><pages>11029-11034</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>This brief focuses on reachable set estimation for memristive complex-valued neural networks (MCVNNs) with disturbances. Based on algebraic calculation and Gronwall-Bellman inequality, the states of MCVNNs with bounded input disturbances converge within a sphere. From this, the convergence speed is also obtained. In addition, an observer for MCVNNs is designed. Two illustrative simulations are also given to show the effectiveness of the obtained conclusions.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35446773</pmid><doi>10.1109/TNNLS.2022.3167117</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-5228-9406</orcidid><orcidid>https://orcid.org/0000-0002-1590-1712</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2023-12, Vol.34 (12), p.11029-11034 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_ieee_primary_9761803 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Bounded disturbances complex-valued neural networks Convergence Delays Disturbances Estimation Learning systems memristor Memristors Neural networks Observers reachable set estimation Switches |
title | Reachable Set Estimation for Memristive Complex-Valued Neural Networks With Disturbances |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A57%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reachable%20Set%20Estimation%20for%20Memristive%20Complex-Valued%20Neural%20Networks%20With%20Disturbances&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Zhu,%20Song&rft.date=2023-12-01&rft.volume=34&rft.issue=12&rft.spage=11029&rft.epage=11034&rft.pages=11029-11034&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2022.3167117&rft_dat=%3Cproquest_ieee_%3E2895884575%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-48409b107811a8782993de1b6066d3341d8fe396f517987da903a6da2cc7a3e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2895884575&rft_id=info:pmid/35446773&rft_ieee_id=9761803&rfr_iscdi=true |